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Preface

The world faces some of its greatest challenges of modern time and how we address them will have a dramatic 
impact on the life for generations to come. Control systems, with its advanced toolbox for understanding and 
designing feedback, robustness, dynamics, decision-making, and complex systems in general for a wide set 
of industrial and societal contexts, has an opportunity to play a central role in the development of technologies 
and solutions for many of the key problems. Many control researchers are already engaged in such activities, 
and some are even driving the rapid technological evolution we are currently experiencing. We believe however 
that much more can be done. Awareness needs to be raised about societal drivers, technological trends, and 
emerging methodologies that are most essential for control systems to gain critical mass and true scientific 
and global impact. And we need to outline how control education and technology translation should evolve 
in the new landscape and for the years to come, considering also issues related to limited natural resources, 
ethics, regulations, etc. 

The initiative to develop this road map on control for societal-scale challenges was taken by us more than two 
years ago. Inspired by encouraging colleagues in the community and by past efforts, we engaged a group 
of leading researchers to help organize the community around this activity. We have had many meetings and 
workshops to discuss and prepare this document. It should be emphasized that the entire road map exercise 
has been a true community effort. In the acknowledgement section in the end of the document, the large 
number of contributors to the road map and the various events are listed. We received significant and focused 
contributions from various leaders in the community as well as input from the community at large. This insight 
was gathered through open invitations to articulate grand visions and broad roles for the control systems 
community to participate in. 

While we believe the road map will be of a strong and broad interest for many individuals and organizations, 
we have prepared it with two principal audiences in mind: (1) Young researchers who are in a nascent stage 
in their career. We want to draw their attention to open and important problems that can lead to significant 
breakthroughs. (2) Funding agencies. We want to underscore the need for support to develop methodologies 
that can lead to groundbreaking results and can be transitioned to societal-scale systems. 

Finally, we would like to express our deepest appreciation for the commitment and dedication from all our 
colleagues who contributed to the road map, the activities that led up to it, and reviewed various versions of it. 
We are grateful to the leadership of IEEE Control Systems Society for launching this initiative and supporting it 
from the beginning. Without the significant financial funding from the IEEE Control Systems Society, IFAC, US 
National Science Foundation, and Digital Futures, this project simply would not have been possible to execute. 
We would also like to thank Amritam Das, Angela Fontan, and Linnea Sundling for their help with many editorial 
and organizational tasks. 

We hope this road map will provide guidelines for participation in the overall scientific endeavor for developing 
methods for the betterment of humanity. 

 

Anuradha M. Annaswamy 
Karl H. Johansson 
George J. Pappas
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Executive Summary

The field of control systems applies specific principles and methods to control dynamic systems so that they 
produce desired outcomes. The scope of this field has been gradually enlarging as the world embraces a 
digital way of life. Information enriched by various degrees of analytics to inform decision-making is moving 
beyond engineering into financial services, socioeconomic analysis, entertainment and sports, and political 
and social sciences. Increased levels of automation are sought after in various sectors and being introduced 
into new domains. All of these advances and transformations urge a shift in the conversation toward how 
control systems can meet grand societal-scale challenges. This is the focus of this Control for Societal-Scale 
Challenges: Road Map 2030.

The document seeks to chart a road map for the evolution of control systems, identifying social areas where 
our discipline can have an impact over the next decade. We begin with a discussion of major societal drivers, 
the role of control systems therein, and emerging technological trends that enable the implementation of 
control systems. We delineate a few methodological directions in control systems that have recently emerged, as 
well as needs and pathways for ensuring validation of emerging methods and technology transition. We also 
provide insight into new workforce education and training curricula to address and implement the solutions 
and methods identified.

The societal drivers we address span climate change, healthcare for quality of life, smart infrastructure systems, 
the economy of sharing, and resilience in societal-scale systems. While these societal drivers discussed in 
Chapter 2 introduce challenges, technological trends outlined in Chapter 3 provide opportunities for control 
systems to address some of these challenges and outline new ones in AI and big data, electrification of 
everything, engineering biology, and robotics in the real world. The challenges and opportunities in Chapters 2 
and 3 lead to the investigation of new methods and concepts in control systems, some of which are outlined 
in Chapter 4. These include learning and data-driven approaches, methods for safety-critical systems, resilient 
cyber-physical systems (CPS), cyber-physical-human systems (CPHS), and novel control architectures. In 
each case, near-term and far-term challenges are outlined.

Chapter 5 articulates technology validation with a focus on control implementation and demonstration of 
impact. This chapter also points out the importance of engaging industry in the overall conversation of 
advanced control technologies and their tangible benefits in various applications that could benefit society. 
Recognizing that education is the cornerstone for the growth and prosperity of the control systems field, 
Chapter 6 discusses university curriculum changes. It provides specific suggestions on what concepts 
and methodologies should be emphasized and how to adapt to a new generation of students. Chapter 7 
emphasizes that the control systems community has an important role to play in future technology designs that 
respect human rights and human values, ensure ethics and fairness, and meet regulatory guidelines, even while 
safeguarding our environment and our natural resources. Finally, Chapter 8 summarizes the recommendations 
made in previous chapters. We end with Epilogue, a section that describes the genesis and evolution of this 
roadmap, Acknowledgments that list all contributors and sponsors, a Glossary of keywords, and an Index. 
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 Foreword

As president, I’m delighted to express my full support for this flagship initiative led by the IEEE Control 
Systems Society. The scope of IEEE is Advancing Technology for Humanity, and the Control Systems Society 
is dedicated to advancing the theory and practice of systems and control. 

2030 is the year chosen for the 2030 Agenda for Sustainable Development by the United Nations. It is therefore 
most appropriate for the field of control systems to lead the way in solving societal-scale challenges over the 
next decade. In this document, we propose novel scientific challenges that the community should pursue, 
investigate workforce education and training curricula to address these challenges, and suggest strategies for 
translation to innovation and transition to practice leading to future disruptive technologies. 

It is important to acknowledge the editors of this milestone document: Anuradha M. Annaswamy,  
Karl H. Johansson, and George J. Pappas. Their leadership, vision, passion, and hard work made this project 
a reality. Anu, Kalle, and George coordinated an inclusive effort by a large number of leading members of 
our community. Thank you all! I also acknowledge the generous support from the International Federation 
of Automatic Control, the National Science Foundation in the U.S., and Digital Futures in Sweden. This road 
map is the culmination of a collaborative effort by the systems and control community. I am sure that control 
systems will play a pivotal role in enabling new technologies that will benefit society and will no longer be 
perceived as “the hidden technology.”

Thomas Parisini 
2022 President of the IEEE Control Systems Society
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Introduction

Anuradha M. Annaswamy, Karl H. Johansson, George J. Pappas

The field of control systems pertains to specific methods and principles to control dynamic systems and 
produce desired outcomes despite uncertainties in the system and in the environment. The development of 
these principles and methods has been both broad and deep, from aerospace systems and wireless networks 
to bioengineering and traffic control. These methods are deeply embedded in many sectors, including energy, 
transportation, healthcare, manufacturing, and robotics.

The scope of control applications has continuously increased over the past few decades. It has moved from 
feedback control of a single device or system to optimizing and making decisions in large-scale systems, 
system-of-systems, and infrastructure systems. This impressive growth of scope and scale is enabled by 
large paradigm shifts in science and technology across the global landscape. Digital transformation has 
been pervasive, enabling significant advances in mature engineering systems and introducing new concepts 
and computational constructs in non-engineering systems such as economic and social sectors. This 
increased cyber footprint, and related exponential advances in computational, communication, and actuation 
technologies, have introduced the concept of automation into new domains and in many cases accelerated its 
implementation. Applications such as self-driving vehicles and automatic control of aerial robots have entered 
the social lexicon and captured the imagination of the general population. Automation does not only underpin 
these applications but is being introduced into a host of other domains as well. All of these advances and 
transformations urge a shift in the conversation toward how control systems can solve grand societal-scale 
challenges. This is the focus of this Control for Societal-Scale Challenges: Road Map 2030.

This road map guides the reader on a journey into the future of control systems, illustrating new societal areas 
where our discipline can have an impact over the next decade. It identifies major societal drivers and emerging 
technological trends, proposes novel scientific challenges that the community should pursue, delineates 
needs and pathways for ensuring validation of emerging methods and technology transition, and investigates 
workforce education and training curricula to address and implement the solutions and methods identified.

Similar efforts with a large, ambitious scope have been carried out in the control community in the past  
[1, 2, 3, 4]. While [1] focused primarily on scientific research challenges, efforts in [2] and [3] concentrated 
on both success stories and research challenges across a range of applications. The reference [4] described 
several critical societal challenges in various sectors, including transportation, energy, water, healthcare,  
and manufacturing. 

In 2019, discussions began in the CSS Executive Committee for a need for a document delivering a broad 
picture of how control systems can effectively impact societal challenges. This led to organizing of two 
workshops, one in June 2021 and another in June 2022, both of which focused on Control for Societal-Scale 
Challenges. The workshop in June 2021 was held virtually, over two days. On both days, the first half of the day 
was an open session attended by about 300 people worldwide. The second half of each day was dedicated 
to creating the road map. The open sessions consisted of six panels organized around a range of topics, 
including safety-critical autonomous systems, resilient infrastructure systems with AI and IoT, decision-making 
with real-time and distributed data, control with human-in-the-loop, control for climate change mitigation and 
adaptation, and education and training. About six panelists participated in each panel, with presentations 
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focused on the topic at hand, the role of control, the underlying challenges, barriers to entry, and the potential 
societal challenges that this topic will impact. The topics were expanded on and organized around suitable 
headings, setting the stage for creating the road map. Gaps and overlaps were identified with steps taken to 
allow better exposition and more comprehensive coverage of the major topics. 

Over the following 12 months, regular conversations were organized to brainstorm the overall structure of 
the road map. This brainstorming included appropriate classification of topics to suitably capture the major 
societal challenges to be presented in the road map. An overall structure emerged, with about six to seven 
chapters, spanning societal drivers, technological trends, key methodologies, technology transition, and 
education and training. The road map shows how main control methodologies can be brought to bear on 
the societal drivers of global challenges and the emerging technologies that can help address and potentially 
mitigate these challenges.

In addition to discussing drivers, challenges, and methodologies, we also discuss the transition from 
control research to products and solutions in various application domains. Considerations and pathways for 
technology transfer, understanding barriers and roadblocks in various application domains, and cost-benefit 
of automations and other control solutions are articulated.

Readers will note that the title of this document specifies the year 2030. As this target is only eight years 
away from the time of writing, the time horizon for the methods outlined in this chapter is not that far away. 
We have chosen 2030 to emphasize that many of the glide paths that we need to embark on in order to meet 
the global challenges should be created to meet this time frame. An additional point to note is that in many 
of these cases, whether they concern realizing a high penetration of renewables, aggressive reduction of 
greenhouse gas emissions, or phasing out of internal-combustion engine-based automobiles, the year 2030 
figures prominently. We have therefore targeted this year as the focus for advancing and transitioning the 
requisite control systems technologies.

A few details follow regarding the structure of this road map. In Chapter 2, we examine a few major societal 
challenges that face the world in the 21st century. The first of those challenges is climate change, a problem 
of increasing urgency that we are continuously exposed to. Healthcare issues that affect quality of life are next 
addressed. Infrastructure systems that provide fundamental services such as energy, water, and transportation 
are discussed, especially the impact of digitalization and empowered consumers. As we proceed deeper into 
the 21st century and resources become scarce, new concepts of resource sharing (including the Sharing 
Economy) are shaping society, and these are also discussed. Finally, concerns about global security and risks 
that affect the socioeconomic landscape are delineated.

In Chapter 3, we outline emerging technological trends that support a large fraction of the efforts of the 
scientific community at large. These include biological engineering, robotics in the real world, large-scale 
electrification, and the roles of artificial intelligence and big data. Each one of these trends presents a range 
of opportunities for the control systems community to play a role in addressing and mitigating the societal 
challenges presented in Chapter 2.

Meeting the challenges and opportunities presented in Chapters 2 and 3 require new methodologies in control 
systems, some of which are outlined in Chapter 4. These include learning and data-driven approaches, 
methods for safety-critical systems, methods for resilience, analysis and synthesis of cyber-physical-human 
systems (CPHS), and novel control architectures. In each case, near-term and far-term challenges associated 
with each of these methods are outlined.
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Chapter 5 articulates the need for a validation infrastructure to illustrate the performance of new control 
methods and demonstrate their impact. This chapter also points out the importance of engaging industry 
and the public sector in the overall conversation of advanced control technologies and their tangible benefits 
in various applications. The important problem of bridging the gap between industrial needs and economic 
and financial expectations on the one hand and relevant and significant research advances on the other is 
addressed. 

Recognizing that education is the cornerstone for the growth and prosperity of the field of control systems, 
Chapter 6 discusses university curriculum changes. It provides specific suggestions on what concepts and 
methodologies should be emphasized and how to adapt to a new generation of students. Finally, in Chapter 7, 
we emphasize that the control systems community has an important role to play in future technology designs 
that respect human rights and human values, ensure ethics and fairness, and meet regulatory guidelines while 
safeguarding our environment and our natural resources.

A glossary of keywords and an index are included at the end of the document. Also included as appendices are 
details associated with some of the societal drivers. Visuals are provided throughout the document to highlight 
key ideas and underlying concepts. References are listed at the end of each chapter for further reading.

We have prepared this document with two principal audiences in mind: (1) Young researchers who are in a 
nascent stage in their career. We would like to draw their attention to the societal needs and technological 
trends that drive the development of the field of control systems, emerging methodologies, open problems, 
and key challenges in applying control systems to address emerging needs. (2) Funding agencies. Given the 
emerging scientific challenges and opportunities for control systems to impact those challenges, we want 
this road map to lead to discussions with funding agencies and other sponsors about new research initiatives 
that critically rely on advances in control systems. We want to underscore support needed to develop various 
methodologies and validate and transition them to societal-scale systems.

We have made every effort to include all major imperatives that will shape the research directions that the 
control systems community engages in. An effort is also made to outline a few other directions that our 
community ought to engage in, such as ethics, fairness, socially responsible automation, and intersections 
with regulatory agencies and policy makers. 

Finally, we note that this entire road map exercise has been a community effort, with significant and focused 
contributions from various leaders in the community as well as inputs from the community at large. This 
information was gathered through open invitations to articulate grand visions and broad roles for the control 
systems community to participate in. We hope that this road map will provide guidelines for participation in the 
overall scientific endeavor for developing methods for the betterment of humanity.
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This section is focused on the issues of climate change mitigation, adaptation, and resilience.  
A comprehensive and diverse collection of research opportunities for the control systems community 
is discussed along with considerations that provide a broader framework for this research.

Societal Drivers

2.A Climate Change Mitigation and Adaptation

Pramod Khargonekar, Tariq Samad, Saurabh Amin, Aranya Chakrabortty, 
Fabrizio Dabbene, Amritam Das, Masayuki Fujita, Mario Garcia-Sanz, Dennice Gayme, 
Gabriela Hug, Marija Ilić, Iven Mareels, Kevin Moore, Lucy Y. Pao, Akshay Rajhans, 
Jakob Stoustrup, Junaid Zafar, Margret Bauer

Society faces a number of major global challenges. More attention needs to be paid by the research 
community to analyze and assess these global challenges and develop scientific tools and engineering 
solutions to mitigate their effects. 

This chapter highlights how the control systems community can provide tools and technologies for 
five societal drivers. The chapter starts with a section on climate change mitigation and adaptation. 
It highlights the existential threat climate change poses to humanity and the crucial role the control 
community plays in developing methods and technologies to reduce greenhouse gas emissions and their 
negative consequences. The second section presents challenges in healthcare and quality of life, including 
equitable access to high-quality healthcare. Several opportunities connected to new medical technologies 
and capabilities are discussed. The third section covers smart infrastructure systems. It focuses on how 
the digital transformation of transportation, water, energy, food, and other infrastructures enables new 
capabilities and opportunities for control due to advances in communication, sensing, and data analysis. 
The disruptive paradigm of the Sharing Economy is covered in the fourth section. Here it is argued that 
new notions of ownership and market interactions would benefit from new control-theoretic concepts. 

The chapter concludes with a fifth section on the resilience of societal-scale systems, discussing the need 
for better planning, management, and control of global systems such as supply chains and networks. 
This section also highlights interdependencies between the societal drivers in this chapter, such as 
infrastructure failures due to climate change and extreme events, which lead to complex vulnerabilities.
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Abstract In this section, we explore the enormous societal-scale challenges driven by climate change and 
global warming and discuss possible research opportunities for the control systems community. We begin 
with a synopsis of the current understanding of climate change processes and their impacts, including the 
major challenges pertaining to replacement of fossil fuels and decarbonization of energy systems as well as 
agriculture and land-use management. We also recognize that the impact of global warming is already being 
felt. This motivates efforts on climate change adaptation and resilience. We present research opportunities in 
the following topics: Infrastructures and Communities; Electric Energy Systems; Electric Power Generation; 
Transportation, Homes, Buildings, and Facilities; Industry and Manufacturing; Hydrogen, Ammonia, and 
Renewable Fuels; Food and Agriculture; Water; Artificial Intelligence Computations; Negative Emissions 
Technologies; Geoengineering; and Environmental Monitoring. In each of these topic areas, we present three 
concrete research directions where control systems can play a significant role, although the opportunities are 
even more numerous. We then discuss several contextual issues that provide a broader frame for pursuit of 
these research opportunities. We discuss the considerations for sustainable economic growth. Because of the 
urgency and time-sensitive nature of climate change, we discuss the need for going from research to large-
scale deployment and how that might be accomplished. We discuss the role of education and awareness 
among students and the broader communities. We underscore the need to consider the paramount issues 
related to equity and justice (economic, regional, global, and generational). We then posit that the control 
systems community will need to engage in transdisciplinary collaborations with experts from other fields of 
science, engineering, health, social sciences, law, humanities, and arts for meaningful research that has a 
desired, positive impact.

2.A.1 Introduction

Climate change poses an existential threat to humanity. It is now indisputable that the primary cause of 
this threat is human activity resulting in high greenhouse gas emissions, which began during the Industrial 
Revolution and has continued to rapidly accelerate. The first warnings of impending and irreversible climate 
change were sounded decades ago, when governmental and intergovernmental policy makers had sufficient 
time to enact the changes needed to avoid the dire situation we find ourselves in today. It appears that global 
warming (of more than 1.5°C) is all but inevitable—and its adverse impacts are already being felt all around 
the world.

The global community must now focus on actions that will save the planetary ecosystem from the most 
dramatic potential consequences. Scientists are increasingly shifting away from the single-minded goal of 
avoiding climate change and toward the twin goals of (a) reducing additional global warming beyond the 1.5°C 
threshold and (b) mitigating and adapting to the effects of climate change. 

With the emergence and convergence of powerful new technologies in the last few decades, the control 
systems community is well-positioned to play a crucial role in the worldwide effort to tackle the challenges 
posed by anthropogenic climate change. 

On the information side, these promising technologies include advanced communications, the industrial internet 
of things, artificial intelligence, machine learning, data analytics, and smart computing capabilities embedded 
in edge devices. In collaboration with experts in these and other fields, the control systems community can 
make vital contributions to climate resilience, including through the integration of key climate variable into the 
planning and operations of critical infrastructure systems; the leveraging of feedback to manage multiscale 
processes in resource-constrained settings; and the investigation of cross-sector interdependencies in 
societal systems.
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Success will also depend on making major methodological changes—in particular moving beyond the 
traditional insularity of controls research. For better and faster solutions, control design must be integrated 
with overall system design rather than being relegated to later stages of development. And we cannot neglect 
the human element—users and stakeholders need to be engaged through appropriate mechanism design and 
behavioral incentives.

In this chapter, we will first review current data and projections on climate change and its anthropogenic 
basis, noting in particular the recent assessment by the Intergovernmental Panel on Climate Change (IPCC). 
Next, we will discuss several distinct targets for research and innovation for the control community, including 
infrastructure systems, power generation and grids, industrial processes, transportation and logistics, and 
food and agriculture. The urgency of the climate crisis means that research-as-usual approaches must be 
eschewed. To that end, we discuss several important considerations related to sustainability, social justice, 
deployment-at-scale, education, and transdisciplinary collaborations. General sources we have relied on for 
this chapter include (IPCC, 2021, [1]) and (IEA, 2021, [2]). Unless otherwise noted, emissions information is 
from (Our World in Data, 2020 [3]; see Figure 2.1). Additional references are included where appropriate.

2.A.2 Climate Change: the 2022 View

Earth’s climate system is undergoing rapid changes not seen in at least the last 2,000 years. There is evidence 
that global average temperatures now are higher than the warmest period in the last 100,000 years, which was 
6,500 years ago. The fundamental physical principles that govern the climate system are well established. It is 
important to note that the climate system is an increasingly coupled natural-human system. Human behavior 
plays a large and essential role in fundamental climate physics. Earth system models for climate are being 
improved and used to predict (along with uncertainty in the predictions) its future course.

Figure 2.1: Global greenhouse gas emissions by sector [3]; the data is for 2016.
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The main causes of human activity-induced global warming include increases in CO₂, CH₄, N₂O, volatile 
organic compounds and CO, and black carbon. There is strong evidence that in 2019, atmospheric CO₂ 
concentrations were higher than at any time in at least 2 million years, and concentrations of CH₄ and N2O 
were higher than at any time in at least 800,000 years. It is estimated that CO₂ concentration has increased 
from preindustrial levels of 280 ppm to 412 ppm in 2020.

The concept of climate sensitivity is defined as the expected increase in global average temperature in 
response to the doubling of atmospheric CO₂ from preindustrial levels. The recent Sixth Assessment report 
by IPCC ([1]) concludes that the (equilibrium) climate sensitivity is in the range of “2°C (high confidence) and 
5°C (medium confidence).” This provides a possible range of global warming as future greenhouse gas (GHG) 
concentrations increase.

The Sixth Assessment report provides very strong evidence that the global average surface temperature in the 
2011-2020 decade was 1.09°C (confidence interval 0.95 – 1.2) higher than the 1850-1900 baseline. In fact, 
each of the last four decades has been successively warmer than any decade that preceded it since 1850. 
The report leverages extensive research on natural drivers of climate change such as changes in incoming 
solar radiation, volcanic activity, and global biogeochemical cycles, among other drivers. It also shares 
observational data on earth’s climate system variables to find unequivocal evidence that the human activity-
induced increases in greenhouse gases have “warmed the atmosphere, ocean, and land. Widespread and 
rapid changes in the atmosphere, ocean, cryosphere, and biosphere have occurred.”

Global warming has already had significant consequences. The emerging techniques from climate change 
attribution science allow us to causally connect global warming to specific observed events. For example, 
the report concludes that globally averaged precipitation over land has increased since 1950 and that human 
influence contributed to this phenomenon. The frequency and intensity of flooding events have increased. 
There are also increases in agricultural and ecological droughts in certain parts of the world, including west, 
central, and south Africa; west and central Europe; the Mediterranean; and western North America. 

It is also virtually certain that human-induced climate change is the main driver of hot extremes (including heat 
waves) that have become more frequent and more intense since the 1950s. It is also very likely that human 
activity is causing ocean warming, the observed retreat of glaciers, and the decrease in Arctic ice. This, in turn, 
has increased global mean sea levels by 0.2m between 1901 and 2018. 

Increased levels of greenhouse gasses caused by human activities have also resulted in ocean acidification 
and reduction in ocean oxygen levels, changing the migration patterns of large fish and sea mammals. 

Climate change is happening around the world with increased frequency and magnitude of extreme weather 
events. (Cold extremes, including cold waves, have become less frequent and less severe.) The future evolution 
of the climate system will depend on how human behavior and policies will affect natural systems. The current 
human population stands at 8 billion and is expected to increase to 9.7 billion by 2050. Much of this increase 
will occur in Asia and Africa, with modest increases in the Americas. Underdeveloped economies and societies 
in Asia, Africa, and other parts of the world will naturally and justifiably aspire to higher standards of living 
and food-energy-water security. Thus, demand for energy, water, food, cement, metals, and other natural 
resources is expected to increase. Thus, there is a strong imperative to meet these demands while avoiding 
further climate change damage.
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There are numerous scenarios for how socioeconomic-technological systems will evolve to impact climate. 
The Paris climate agreement, which was formally adopted in 2016, commits the world “to limit global warming 
to well below 2, preferably to 1.5°C, compared to pre-industrial levels.” Nevertheless, the 1.5°C target appears 
highly likely to be exceeded, hence the need to adapt strategies even as global coordination is harnessed 
to limit further greenhouse gas emissions and global warming. Both strategy and global coordination will be 
required to ensure a livable, sustainable planet.

2.A.3  Targets of Opportunity for Control Systems Scientists  
and Engineers

The urgency and scale of the climate change problem should be an immediate call to arms for collaboration 
between scientists, policymakers, and experts from many disciplines. Control scientists and engineers have 
a crucial role to play. 

In this section, we address a number of topics in which research and innovation are required and where 
the control community can play a leadership role. Figure 2.2 provides an overall schematic illustrating the 
interconnections between these topics and some of the associated technology enablers and applicable 
control methods and tools.

In each case, we provide a capsule summary of the opportunity target, followed by three research priorities for 
control scientists and engineers. (The limitation to three opportunities is solely because of space restrictions, 
not a lack of additional research areas with high-impact potential.) We have also indicated the timeline in which 
each opportunity could be expected to have broad societal impact—by which we mean that the technology 
would be fully matured and deployment at scale underway—as follows:

• Short-term: Societal impact by 2030

• Medium-term: Societal impact during 2030 – 2040

• Long-term: Societal impact post-2040

The authors of this section of the report plan to prepare a more comprehensive document in which the 
opportunities noted below and others will be discussed at greater length.

Infrastructures and Communities

An outcome of climate change is that extreme weather is becoming an increasingly serious threat to critical 
infrastructures such as electric power grids, transportation (road, rail, and air) systems, water treatment and 
distribution, communication networks, and public safety. Some of these infrastructures are critical targets of 
opportunity on their own and are discussed in sections below. However, many infrastructures have dynamic 
interdependencies. For example, repairing electric grids after a hurricane requires that the transportation 
system be available to move equipment and people. Similarly, traffic and water systems may depend on the 
availability of electric power. Such sector couplings and interdependencies need to be carefully modeled and 
addressed. In general, the toolkit of the control theorist or engineer on decision-making under uncertainty can 
help in better integration of weather and climate data for both assessment and management of climate risks 
to critical infrastructure.



12

Figure 2.2: Control technology and tools can play a central role in addressing a wide range of challenges 
associated with climate change adaptation and mitigation. A number of these challenges involve infrastructure 
and communities (food and agriculture, water, transportation, energy systems, production, homes and 
buildings) that directly impact humans and their interactions with the natural environment. 

We also include the greening of communities and civil works in this section. Example opportunities:

• Strategically allocate distributed resources for resilience in infrastructures and infrastructure networks, 
failure identification, adaptation, and repair (medium-term)  

• Design net-zero (or net-positive) smart cities with holistic models encompassing multiple vertical 
functions (medium-term)

• Design resilient coastal structures and management systems capable of withstanding expected  
sea-level rise (long-term)

See also Section 2.C of this report for further discussion of control-relevant infrastructure opportunities.
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Electric Energy Systems

A dramatic transformation of power grids is underway. The world is moving from the historical model of 
centralized, dispatchable power generation based on fossil fuels to a distributed system in which the most 
power generation is from renewable sources. The vision is to create an autonomous, continuous, secure, and 
decarbonized power grid that is both efficient and affordable. Today’s grid technologies and operations are 
poorly suited for massive-scale penetration of renewable generation. New advances in control technologies 
and architectures transitioning from conventional centralized controls to more distributed and hierarchical 
controls will be essential to ensure that tomorrow’s grids are stable, reliable, scalable, and cost-effective. The 
challenges and opportunities span transmission and distribution networks, and that division itself may need to 
be revisited. Example opportunities include:

• Develop control using new power electronics technologies for enabling renewable integration (short-term)

• Create new economic models for dynamic electricity pricing across different timescales (medium-term)

• Create distributed optimization and control for deep integration of renewable generation, storage,  
and demand management (medium-term)

Electric Power Generation

A major priority is to replace fossil fuel-based electricity production with renewable energy such as wind, solar, 
and geothermal. Wind and solar energy costs have decreased dramatically in many regions and nations, with 
the levelized cost of energy at parity with or better than fossil fuel generation. Additional renewable sources, 
such as marine and riverine hydropower, are also promising avenues for enhancing carbon-free generation. 
Opportunities for the control community exist at multiple levels, from turbines to generator assemblies to grid 
interfaces. Example opportunities include:

• Dynamically manage and optimize large-scale renewable energy generators (short-term)

• Develop control co-design for floating offshore wind, tidal, and wave power generators (medium-term)

• Optimize coupled cross-sector electricity generation, including hydrogen and biofuels (long-term)

Transportation

Decarbonizing road, rail, air, and marine transportation, which accounts for about 16% of global greenhouse 
gas emissions, is another high priority for climate change mitigation and adaptation. In the last few years, 
electric vehicles have made dramatic progress, but more is needed: The IEA projects that oil share will need to 
drop to slightly over 10% in the transport sector worldwide if net-zero emissions are to be achieved by 2050 
[2]. The decarbonization of air and marine transport is in the exploratory stage. In addition to electrification, 
other energy strategies, such as hydrogen and ammonia, also need to be developed. This opens up a gamut 
of research opportunities for the control community, not only at the level of individual vehicles but also for 
logistics and freight networks. Example opportunities include:

• Create sensing and control for batteries, fuel cells, and emerging powertrains such as hydrogen and 
ammonia (short-term)

• Develop novel CPHS designs for energy-efficient smart mobility, including vehicle-to-facility/-grid 
power flows (medium-term)

• Control decarbonization of multiscale transportation networks (long-term)
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Homes, Buildings, and Facilities

Homes and buildings account for about 18% of global greenhouse gas emissions. Some level of decarbonization 
will automatically occur as renewable generation is expanded, but other opportunities in the built environment 
also exist. The focus should not be limited to individual buildings, whether residential or commercial; larger 
scales of habitation are also promising targets. We need to remember that these are places where people 
live and work, and thus human behavior must be considered. A major opportunity here is to match the 
energy a community needs with renewables in a flexible manner, i.e., using demand management. Example 
opportunities include:

• Develop greenhouse gas emissions-aware energy management for data centers (short-term)

• Automate and control intelligent microgrids and demand response (short-term) 

• Control co-design and operation of energy-efficient geothermal heat pumps for heating and cooling 
(medium-term)

Industry and Manufacturing

The carbon impact of industrial and manufacturing processes arises from the extensive use of power and 
heating, and both must be addressed. In addition, the diversity of facilities implies that some opportunities are 
sector-specific. However, some sectors are large enough carbon emitters (e.g., iron and steel, chemicals and 
petrochemicals, cement) to require dedicated attention. In some cases, new industrial processes may need to 
be developed as alternatives to energy-intensive and hard-to-decarbonize processes. Almost 30% of global 
greenhouse gas emissions arise from industry. Moves toward circular economies, which emphasize resource 
efficiency, reduced waste, and reuse, can also help the sustainability of manufacturing—and the inherent 
feedback loops involved imply strong control connections. Example opportunities include:

• Ensure energy efficiency of industrial processes and equipment, integrating heat and power (short-term)

• Optimize and control “greening” energy-intensive manufacturing sectors (medium-term)

• Optimize and control CO₂ capture, utilization, and storage (long-term)

Hydrogen, Ammonia, and Renewable Fuels

Energy-dense fuels with low carbon footprints are needed to replace conventional oil, gas, and coal for 
applications beyond the performance limits of current or near-term electric energy storage technologies. 
Clean hydrogen and hydrogen-based clean-burning liquid fuels such as ammonia and low-carbon biofuels are 
potential energy carriers for such applications. Hydrogen and its derivatives are expected to contribute 10% 
of the total emissions reductions at the lowest cost [4] by 2050, equivalent to 80 GT of CO₂. Because it is at 
an incipient stage, this sector presents numerous opportunities and challenges for design, innovation, and 
technology development. Example opportunities include:

• Design and implement electrolyzer control systems with extensive buildout for large-scale hydrogen 
production (short-term)

• Produce hydrogen from natural gas with carbon capture and sequestration (blue hydrogen), including 
advanced process control, dedicated SCADA, and reservoir modeling [5] (medium-term)

• Control co-design for the production of synthetic hydrogen-based fuels such as ammonia, methanol, 
e-methane, and e-kerosene, especially for the transportation sector (long-term)
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Food and Agriculture

Agriculture, forestry, and land use activities account for over 18% of global greenhouse gas emissions. In 
addition, the impact of climate change on crop cultivation is expected to be drastic. This sector will need to 
rapidly evolve in order to gain flexibility and adaptability to environmental changes and to optimize production. 
Recently, the development of the Agriculture 4.0 paradigm—the integration of sensors, actuators, algorithms, 
and digitalization—has provided a platform for control systems to play a key role in sustainable agriculture. The 
entire food supply chain also presents opportunities for control. Example opportunities include:

• Coordinate uninhabited aerial and ground vehicles for agriculture and other land use (short-term)

• Manage food supply chain for sustainable product distribution integrating greenhouse gas footprints 
(medium-term)

• Control agrivoltaics for integrated agriculture and power generation (medium-term)

Water

The deleterious impacts of climate change on water are numerous and evident. Water levels are already being 
depleted in rivers, streams, aquifers, and freshwater lakes, even as sea levels are rising in oceans. Supplies of—
and demand for—potable water need to be better managed. Water scarcity is affecting agriculture worldwide 
too. If left unaddressed, the adequacy of food supplies for a growing global population will be in question. 
Increased frequencies of floods and storm surges raise a different kind of critical concern, one that relates to 
climate change adaptation as well as mitigation. Example opportunities include:

• Manage and optimize agricultural irrigation and its associated infrastructure (short-term)

• Create dynamic models and control strategies for water conservation in communities, including 
behavioral change (medium-term)

• Control and optimize water treatment, including resilient and autonomous mobile facilities (medium-term)

Artificial Intelligence Computations

The estimated amount of computation used to train deep learning neural network models increased 300,000 
times between 2012 and 2017 [6]. Computational workloads for AI and digital transformation are expected to 
grow up to 100-fold, outstripping GPU scaling and Moore’s law [7]. The climatic repercussions of large-scale 
information and computing technologies (ICT), especially machine learning, can no longer be ignored. Pursuing 
efficient computation and communication is an urgent need, even as renewable sources are increasingly being 
relied upon for power. Example opportunities include:

• Develop energy optimization for training algorithms, covering both model architectures and hardware-
aware execution control (short-term) 

• Optimize computing infrastructure and hardware, encompassing data storage, parallelization, and 
repurposing (medium-term)

• Develop distributed learning algorithms, leveraging large-scale edge and cloud computing and 
optimizing resource allocation based on greenhouse gas considerations (medium-term)
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Negative Emissions Technologies

Completely cutting out carbon emissions in the near term is virtually impossible—some forms of transport, 
industrial activity, and agriculture and husbandry cannot be made greenhouse gas-neutral yet. Other actions 
must be taken to offset these emissions. i.e., negative carbon technologies are essential. The opportunities 
range from landscaping to CO₂ capture, utilization, and storage. Example opportunities include:

• Measure, track, and optimize emerging carbon markets (medium-term)

• Design and control direct-from-air CO₂ capture systems (medium-term)

• Design and operate artificial photosynthesis systems (long-term)

Geoengineering

Geoengineering is a controversial topic but one that offers opportunities for controls research. By making 
large-scale interventions in the Earth’s ecosystem, including in its oceans and atmosphere, greenhouse gasses 
may be absorbed, and solar radiation reaching the planet’s surface may be reduced. Such interventions may 
involve extensive aerosol releases in the atmosphere, launching and unfurling large reflective mirrors in space, 
and enhancing the CO₂ absorption capacity of oceans through massive chemical doping. As these examples 
suggest, considerable caution needs to be exercised in even contemplating some geoengineering projects—
and control scientists can help sound alarm bells where needed. On the other hand, today’s large-scale 
projects on generation and storage also have geoengineering implications that need to be better assessed. 
Example opportunities include:

• Plan large-scale renewable generation sites to minimize adverse local ecosystem and climate impacts 
(medium-term)

• Model ultrascale spatiotemporal ecosystems, taking into account the interconnections among 
terrestrial, oceanic, and atmospheric dynamics (long-term) 

• Develop risk-sensitive optimization and control under high long-term uncertainty, with awareness of 
the potential for catastrophic unmodeled effects (long-term)

Environmental Monitoring

The truism that we cannot control what we cannot measure is relevant for climate change mitigation and 
adaptation. Sensing, estimation, and monitoring will be necessary to assess continuing greenhouse gas 
emissions and the effectiveness of control strategies for reducing them. Instrumentation on the ground, 
on and underwater, in the sky, and in space will be required, along with integrated analytics incorporating 
spatiotemporal dynamic models. To be effective, environmental monitoring must be undertaken as an 
international collaboration. Example opportunities include:

• Develop fault detection and alarm management in large-scale instrumentation networks (short-term)

• Undertake regional and planetary-scale spatiotemporal estimation and filtering (medium-term)

• Cooperatively monitor the environment with fixed and mobile sensors (medium-term)
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2.A.4 Broader Perspectives

Climate change mitigation and adaptation is complex and not just an engineering or technology problem. 
It requires a collaborative effort among engineers, technologists, economists, and those developing social, 
regulatory, and public policies. We need to be aware of this broader context as we develop frameworks for 
impactful research, education, and real-world translations.

Sustainable Economic Growth

Sustainability requires a balanced interplay between society, the economy, and the environment. The key 
question to address is how we can create and maintain a prosperous society with high quality of life for all, 
without the negative impacts that have historically harmed our environment and communities in the name of 
development. Economic growth is part of the solution, particularly for developing nations that need to raise 
standards of living and improve health, nutrition, and education for billions of people. Economic growth must 
be accomplished while effectively managing and natural resources and preserving them for current and future 
generations. Our vision needs to shift from consumption and waste to regeneration and recirculation—a shift 
that will enable future generations to thrive.

From a climate change mitigation perspective, we must minimize the need for fossil fuel energy sources while 
meeting economic growth targets. This is a major challenge and requires a rapid reduction in the costs of 
technologies. However, given that such cost-competitive technologies do not currently exist, we can expect 
that fossil fuel-based energy sources will be used for at least the next decade.

It is also important to steer economic growth toward a sustainable future, i.e., green growth. Investments 
in sustainable development, elimination of fossil fuel in various sectors, creation of circular economies, and 
climate change adaptation and resilience can enable economic growth and long-term sustainability.

From Research to Large-Scale Deployment

Climate change mitigation and adaptation require solutions that can be implemented at scale. Typically, 
energy-generating and energy-consuming systems are large-scale systems, e.g., electric grids, transportation, 
buildings and cities, and manufacturing. Because we are in a race to decarbonize the energy system before 
global warming exceeds 2°C or even goes well beyond, the transition from research to large-scale deployment 
is a major challenge. Dramatic reductions in the costs of wind and solar electricity are, therefore, inspiring 
developments.

Fortunately, there is an increasing understanding of research-based innovations. Also, government funding 
agencies are focusing on the need for high-impact innovations. The controls research community should 
systematically, creatively, and aggressively think about the research-to-real-world transition. National-scale 
testing and experimental infrastructures will be needed. The business case for investment in new technologies 
also needs to be understood.

Tight coordination and collaboration between academic researchers and industrial communities can be 
especially helpful. Developing collaborative networks with shared goals, datasets, and mutually reinforcing 
activities can also be a powerful approach to ensure research results have real-world impacts. Closer ties with 
policymakers and regulatory bodies will also be needed to expedite the adoption and scale-up of solutions.
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Education and Awareness

The younger generation of students is deeply interested in and motivated by climate change mitigation and 
adaptation. Many of them see these as “their problems” that their generation will have to deal with. There is 
little doubt that many students interested in control systems are also interested in the challenges posed by 
climate change. As such, there are opportunities to include topics related to climate change in undergraduate 
and graduate-level controls education. These can range from using examples and projections of climate 
change impacts in undergraduate courses to multidisciplinary advanced courses at the M.S. and Ph.D. levels. 
A specific opportunity is a course on control methods for sustainability.

Awareness of the ecosystem, and especially climate, as a dynamic system, and the relevance of control 
science and engineering for its stewardship, need to be instilled in the broader public—an audience that 
educators within the discipline rarely reach out to.

This topic, which goes beyond the specific societal challenge of climate change mitigation and adaptation,  
is also discussed in Chapter 6 in this report.

Equity and Energy Justice

Historically, the effects of climate change and environmental degradation have dramatically impacted the 
disadvantaged and poorer sections of society worldwide. For example, the impact of fossil fuel plants on air 
quality has been disproportionately borne by poor and minority communities. Similarly, climate change impacts 
such as flooding, droughts, and wildfires disproportionately impact these same communities. Heat waves 
affect poor households without adequate air-conditioning, leading to loss of life. Sea level rise is expected to 
affect poorer nations, leading to large migrations. Developing nations have borne the brunt of climate change 
yet have made a relatively small contribution to global warming. These are the nations that need better energy 
infrastructures in order to develop their economies. 

Development of new climate-related technologies can further exacerbate these problems. For example, 
increased government investments in research, development, and commercialization can further widen 
economic inequality. Perversely, the increased costs of climate change mitigation and adaptation might worsen 
the burdens on disadvantaged communities.

The control community must be fully cognizant of these issues of energy justice, intergenerational equity, and 
global economic development as it engages in work related to climate change mitigation and adaptation (see 
also Chapter 7 for additional discussion).

Transdisciplinary Collaborations

It is important to note that climate change mitigation and adaptation problems are beyond the remit of 
any single discipline. Progress on climate change problems will require collaboration among engineering, 
business, social-economic-behavioral sciences, and humanities. The control community does not necessarily 
have the right models to deal with these broader perspectives, particularly where socioeconomic-technical 
intersections occur.

Thus, it is not helpful to think of these problems as control problems. Rather, the control community should 
partner with experts from other domains and fields to form collaborative teams to address the large-scale, 
urgent, and daunting challenges. Forming such teams is a challenge considering the additional time and 
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resources needed to develop effective and functional teams. Fortunately, there is a large body of literature, 
tools, and techniques for convergent transdisciplinary research and innovation. The control community should 
also be proactive in rewarding and recognizing its members working on such collaborations, as their work does 
not easily fit into the traditional framework for publications, presentations, and professional advancement.

Concluding Comments

The enormous challenges posed by climate change mitigation and humanity’s sustainable adaptation to its 
effects offer signature opportunities for systems and control scientists and engineers. As is evident from 
this section, the scope and scale of opportunity for the control community are broad and deep, spanning 
numerous technology and industry sectors. Multiple, specific challenges in these sectors offer opportunities 
for examination by experts in systems, design, modeling, controls, decision-making, optimization, and related 
topics. A summary of the opportunities examined in this chapter—recognizing that these are but a subset of 
the vast array of opportunities open to the control community to showcase its capabilities to help address 
climate change and mitigation—is shown in Figure 2.3.

The climate change challenge is of urgent and existential importance. It renders historical paradigms of control-
centric research, translation, and development inadequate. Transdisciplinary collaborative partnerships are 
necessary, and these must extend beyond science and engineering disciplines to also embrace the humanities 
and social sciences. Early engagement with industry and government will also be crucial so that deployments 
can take place at scale and as rapidly as possible. We have humanity’s future to gain but little time to lose.
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Figure 2.3: Selected opportunities for control scientists and engineers to address climate change and 
mitigation. The color coding indicates the subsection in this chapter where the topic is further elaborated. 

LEGEND

Infrastructures and Communities
Electric Energy Systems
Electric Power Generation
Transportation
Homes, Buildings, and Facitilities
Industries and Manufacturing
Hydrogen, Ammonia, and 
Renewable Fuels
Food and Agriculture
Water
Artifi cial Intelligence Computations
Negative Emissions Technology
Geoengineering
Environmental Monitoring

SHORT-TERM OPPORTUNITIES

Power electronics for renewable integration
Large-scale renwable energy generators
Batteries, fuel cells, and emerging powertrains
Data centers
Automated microgrids and demand response
Industrial processes and equipment integrating heat and power
Electrolyzer systems for hydrogen production
Coordinated uninhabited vehicles for land use
Argicultural irrgation and associated infrastructure
Machine learning algorithms
Large-scale instrumentation networks

LONG-TERM OPPORTUNITIES

Resilient coastal structures for rising sea levels
Deep integration of renewable generation, storage, and demand management
Coupled cross-sector electricity generation
Decarbonized transportation networks
Synthetic hydrogen-based fuels, especially for transportation
Artifi cial photosynthesis systems
Ultrascale spatiotemporal ecosystem modeling
Risk-sensitive optimization and control under high long-term uncertainty

MEDIUM-TERM OPPORTUNITIES

Strategic allocation of distributed resources for infrastructures and networks
Net-zero/net-positive smart cities
Dynamic electricity pricing across diff erent timescales
Floating off shore wind, tidal, and wave power generators
Energy-effi  cient smart mobility, including V2X
Geothermal heat pumps for heating and cooling
“Greening” energy-intensive manufacturing sectors
CO2 capture, utilization, and storage
Blue hydrogen
Food supply-chain management for integrating GHG footprints
Agrivoltaics for integrated agriculture and power generation
Water conservation in communities, including behavioral change
Water treatment, including for mobile facilities
Computing infrastructure and hardware
Distributed learning algorithms based on GHG considerations
Emerging carbon markets
Direct-from-air CO2 capture systems
Renewable generation sites minimixing adverse local impacts
Regional and planetary-scale spatiotemporal estimation and fi ltering
Cooperative environmental monitoring with fi xed and mobile sensors
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Recommendations

For young researchers: Climate change is arguably among humanity’s most important challenges, 
if not the single most important. It will affect our lives and our communities for decades to come. It 
encompasses a very large and diverse set of technical topics. Because of its inherently transdisciplinary 
nature, it will catalyze continued intellectual growth and ever-expanding perspectives. You will have 
opportunities to work with colleagues from other fields of knowledge on collective goals. You will 
also have opportunities to work in a variety of organizations, including academic, private industry, 
nonprofit, policy, and government.

For funding agencies: The importance of climate change cannot be emphasized enough. 
To address this challenge and develop urgent and effective solutions, robust financial and 
programmatic support from government, private, and philanthropic organizations is essential. 
There is a great variety of research topics within this overall theme. Thus, one or more of these 
themes is likely to align with any given funding agency’s goals. It is very important to keep in mind 
that climate change research is inherently transdisciplinary. Control systems experts can make 
important and essential contributions. But to realize this potential, research funding programs 
should be designed with care, encourage transdisciplinary collaborations, and integrate control 
systems where appropriate.
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Abstract Quality of life is critically important to all human beings. As we age and experience declining health, 
disease, and injury, our perceived quality of life is intertwined with issues of healthcare. There are significant 
challenges to achieving equitable access to high-quality healthcare globally. These challenges include the rising 
numbers of older populations worldwide; increasing healthcare costs; decreased trust in science and public 
health advisors; and the increasing occurrence, awareness, and attention to mental health issues. Despite 
these challenges, new technologies and capabilities can and will significantly and positively impact human 
health and quality of life. Current perspectives on healthcare and quality of life have been shaped over years 
of slow-moving, often costly progress and were then recently transformed by the COVID-19 pandemic. In this 
section, we discuss how pandemics and epidemics historically, currently, and continually affect the world and 
our field. We also provide some context for medical device development and the regulatory aspects that must 
be understood. We then proceed to expound upon target opportunities for the control systems community 
in the areas of systems-level medical technologies, neuroengineering solutions to modulate the central and 
peripheral nervous system, and medical devices that incorporate closed-loop control to regulate and treat 
disease. The section concludes with recommendations for young researchers and relevant funding agencies 
to help the control systems community address the societal-scale challenges of healthcare and quality of life.

2.B.1 Introduction

Quality of life is critically important to all human beings, and as we age and experience declining health, 
disease, and injury, our perceived quality of life is intertwined with issues of healthcare. A recent report by 
Deloitte examined significant drivers that are influencing healthcare globally, including the worldwide COVID-19 
pandemic, rapid advances in medical science, and exponential growth in digital technologies and data 
analytics (see Figure 2.4). These drivers are coupled with increasingly informed and empowered healthcare 
consumers and a significant shift from thinking only about disease care to more broadly addressing prevention 
and well-being [8].

2.B Healthcare and Ensuring Quality of Life

Marcia K. O’Malley, Philip E. Paré, Sri Sarma, Tommaso Menara, Fabio Pasqualetti,  
Timothy O’Leary, Rodolphe Sepulchre, Francis J. Doyle III, Eyal Dassau, Sarah Fay, 
Anette Hosoi, Dalton Jones

Healthcare and quality of life are important societal-scale challenges that will increase in 
importance as populations grow and age. The control system community has played and can 
play even more of a key role in the development of technologies and systems that meet these 
challenges and enhance healthcare outcomes.
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There are significant challenges to achieving equitable access to high-quality healthcare globally. In the U.S., 
the number of Americans 65 and older is expected to nearly double by 2060 [9], and this trend is even more 
apparent in other countries. The costs of treatments and prescription medications are escalating. Decreasing 
trust in science, healthcare workers, and public health initiatives has resulted in vaccine hesitancy. There is a 
shortage of healthcare professionals due to the ongoing stressors of the COVID-19 pandemic. Mental health 
concerns are also on the rise, with increased attention on pandemic- and age-related isolation, and the impact 
of social media on mental health and well-being. 

Figure 2.4: Six primary issues for the global healthcare sector [8].

But all is not dire. New technologies and capabilities have the potential to positively impact human health and 
quality of life in significant ways. For example, there is an increasing focus on disease prevention and health 
monitoring using wearable technologies and fitness trackers. Compared to other nations, the U.S. excels in 
common prevention measures like flu vaccinations and breast cancer screenings [10]. The COVID-19 pandemic 
showed the potential for novel mRNA technologies to enable rapid vaccine development. New therapeutic 
techniques are showing promise to deliver gene-based therapies tuned to an individual. There are government 
initiatives to expand access to healthcare, life expectancy is on the rise worldwide. The emergence of enabling 
technologies such as data analytics, novel sensors, and advanced imaging techniques creates opportunities 
for further advancing the quality of healthcare and health-related quality of life. The control systems community 
is strongly positioned to address these challenges and further advance our capabilities and technologies.
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2.B.2 Current Perspectives on Healthcare and Quality of Life

There are a number of stressors that shape healthcare and quality of life. Some stressors are not directly 
related to healthcare but impact it nonetheless, particularly in terms of equity. For example, extreme poverty 
worldwide (exacerbated by the pandemic), climate change, and emerging geopolitical conflict affect healthcare 
access and quality [8]. Many countries struggle to offer universal health coverage to their people, leading to 
large out-of-pocket expenses for those seeking healthcare and treatment for disease and prevention. There 
are also large differences in the quality and access to healthcare worldwide, including access to facilities, 
state-of-the-art technologies, and even appropriately skilled clinicians. Telemedicine for disease diagnosis and 
counseling has emerged as one way to reach rural and underserved populations, but issues of data privacy 
and confidentiality have not fully been addressed [8]. Further, unintentional but systematic biases exist based 
on age, race, gender, caste, sexual orientation, disability, mental illness, and more, resulting in inconsistent 
healthcare experiences across populations [8]. Clinical trials often fail to truly and meaningfully represent 
the heterogeneity of populations. Artificial intelligence and machine learning techniques have great potential 
to transform healthcare, from offering new insights and capabilities for treatment decisions and disease 
detection. However, there are ingrained biases in algorithms in these systems that have the potential to result 
in inaccurate or missed diagnoses, leading to undesirable clinical outcomes and poor experiences for patients 
[8]. Finally, trust in healthcare providers varies across race, culture, and ethnicity, and this can affect whether 
or not people take advantage of preventive healthcare interventions like vaccines.

The previous section of this chapter focused on climate change, which has been recognized as a health 
emergency by leading organizations worldwide [11]. Healthcare costs related to climate change and pollution 
topped $820 billion per year in the U.S. in 2021 [12]. Healthcare impacts related to climate change and 
pollution include an increase in heat-related deaths, malnutrition due to extreme flooding and drought, and a 
climate that is becoming more suitable to the spread of infectious diseases [8]. Natural disasters are increasing 
in frequency, intensity, and variability, leading to negative downstream effects that challenge healthcare 
infrastructure, supply chain, and workforce [8].

Mental health and well-being are increasingly being recognized as a healthcare and quality-of-life priority. It 
has been stated that one-quarter to one-half of the population will deal with mental health issues at some 
point in their lives. The direct and indirect costs of mental illness are estimated at over 4% of global GDP, more 
than the cost of cancer, diabetes, and chronic respiratory disease combined [8]. The World Economic Forum 
identified five priorities for improving mental health, including improving access to mental healthcare and 
encouraging the development of novel therapies to treat mental health conditions [13]. Digital technologies 
hold much promise for transforming global mental and behavioral health systems, improving accessibility and 
affordability while also enabling scalable and fit-for-purpose solutions [8].

Advances in medical science offer many opportunities for contributions from the control engineering and 
science community. Increasingly, digital therapeutics are being explored for mindfulness and pain management. 
These technologies integrate virtual reality, gamification, and novel sensing technologies to improve patient 
outcomes. Digital companions can improve healthcare, quality of life, and medical outcomes by encouraging 
compliance with medical interventions that are used in the home, such as inhaler use or insulin delivery. In the 
remainder of this section, we highlight two topics that are particularly relevant today and shape the way that 
we think about how we can lend our expertise to improve healthcare delivery and quality of life for the world. 
First, we discuss pandemics and endemics in greater detail. Then, we provide some context for medical device 
development and its regulatory aspects.
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Pandemics and Endemics 

As the SARS-CoV-2 pandemic made clear, infectious diseases pose serious risks to public health. Mitigating 
such risks is imperative but difficult for several reasons, including uncertainty in disease dynamics and the 
nuances of human behavior. Societal leaders must use the information available to make decisions that 
minimize the costs of an epidemic. These costs include the direct health effects of the disease and secondary 
societal effects such as unemployment, loss of educational opportunities, and mental health concerns. There is 
an endless variety of infectious diseases that menace humanity, each of which requires different interventions 
to control. A 6-foot social distancing mandate, while effective for slowing the spread of airborne diseases, 
does very little to stop the spread of cholera transmitted through the water supply. As policies to prevent future 
epidemics are put in place, various interventions must be understood and weighed against their effectiveness 
for a given disease and any externalities they may pose on individuals and society.

Applying policies to mitigate the spread of disease is not new to the SARS-CoV-2 pandemic. Quinto Tiberio 
Angelerio, a physician in late 16th century Sardinia, advocated for lockdowns, social distancing, and 
quarantines to stop the spread of the plague [14]. Even without fully understanding the nature of disease 
transmission (the germ theory of disease spread would not be proven until Leeuwenhoek developed a strong 
enough microscope in 1675), Angelerio intuited that by instituting preventive measures, the spread of plague 
could be slowed. Angelerio’s success reaffirmed one of the most powerful maxims of control theory: coarse 
models can be used to develop effective and robust feedback control.

From a modern perspective, understanding how to apply systems and control theory to use measurements, 
synthesize models, and derive effective policy recommendations will be instrumental in preventing future 
epidemics. Projections indicate that, while pandemics have occurred regularly over time, data indicates that 
they arise more frequently now than in the past [15]. Moreover, because of changes in globalization and travel, 
once a pandemic starts, there is a greater risk that it will spread throughout the population. Modern techniques 
that can be used to limit the spread of disease include testing, contact tracing, vaccination, social distancing, 
masks, and others. Understanding how these approaches work together and how they might be implemented 
in the real world is imperative. For more details and discussion on pandemics, please see Appendix 2.A.

Medical Devices and Regulatory Considerations 

Medical devices contain hardware and software elements, like other devices, but might have a different product 
life cycle and are subject to regulatory approvals per their classification. A consumer electronic device design 
and development process might be as short as a few months from early design to manufacturing. In contrast, 
medical devices may take several years from conceptual design to a cleared product. Safety, reliability, and 
security are fundamental principles in the design, testing, and clinical evaluation of medical devices as well as 
clinical effectiveness of a device. 

In the United States, the Food and Drug Administration (FDA) is the body that is responsible for protecting 
public health. It accomplishes this by assuring the safety (the device does not expose the user or others to 
unnecessary risk from its use), efficacy (the device is effective in achieving the claims that are made for its 
intended use), and security (the device has been designed to protect the users and others from unintentional 
harm and misuse) of medical devices [16, 17]. Software as medical device (SaMD), software in medical device 
(SiMD), and software that is used in manufacturing or maintenance of medical devices are three types of 
software that are related to medical devices and will need to follow the regulatory guidelines and be subject to 
regulatory review [17, 18]. The FDA has published guidance related to medical device development and testing 
for medical software and control algorithms for medical devices such as:



27

1. Software as a Medical Device (SAMD): Clinical Evaluation Guidance for Industry and  
Food and Drug Administration Staff [19]

2. The Content of Investigational Device Exemption (IDE) and Premarket Approval (PMA)  
Applications for Artificial Pancreas Device Systems Guidance for Industry and Food  
and Drug Administration Staff [20]

3. Investigational Device Exemptions (IDEs) for Early Feasibility Medical Device Clinical Studies, 
Including Certain First in Human (FIH) Studies Guidance for Industry and Food and Drug 
Administration Staff [21]

4. Policy for Device Software Functions and Mobile Medical Applications Guidance for Industry  
and Food and Drug Administration Staff [22]

2.B.3  Targets of Opportunity for Control Systems Scientists  
and Engineers

Ensuring equitable access to high-quality healthcare, advanced diagnostics, preventive methods, and 
infrastructure is critical to realizing continued longevity and quality of life as we age. While this work relies 
on the contributions of a broad team of experts, including scientists, policymakers, and clinicians, control 
systems scientists and engineers play a critical role in advancing healthcare and quality of life.

We have identified a number of specific targets of opportunity related to healthcare and quality of life. 
These are grouped in three high-level categories: a) medical technologies that work at the systems level,  
b) neuroengineering solutions for modulating the activities of the central and peripheral nervous system, and 
c) medical devices that incorporate closed-loop control for regulating or treating diseases. We offer a summary 
of the opportunity and suggest high priority research opportunities for each category.

Medical Technologies

Medical Internet of Things (IoT): Medical internet of things (IoT) is a growing collection of sensors, actuators, 
and clinical and personal decision support systems that are capable of sharing information, providing a 
connected infrastructure, a system of systems that can monitor, diagnose, and provide clinical insight or therapy 
to individuals. The IoT domain is large and growing, including sensors like continuous glucose monitors (CGM), 
wearable activity trackers or wellness devices, and GPS and calendar applications (apps) that are part of a 
mobile smartphone (see Figure 2.5). The information fusion of these IoT devices brings new opportunities for 
making medical diagnoses. It also delivers new tetraphonic modalities where control and monitoring strategies 
can lead to data creation, analytic engines, and therapy control. One example of such a system is automated 
insulin delivery (AID) or artificial pancreas for people with Type 1 diabetes (T1D). A CGM provides information to 
a control algorithm that is embedded in a medical device such as an insulin pump or a medical app in a phone 
that controls insulin delivery from a pump. Such an AID can be enhanced with information from an activity 
tracker, sleep monitor, or another wearable device to improve the automation of the system beyond single-
input single-output (SISO) control. This can include additional predictive capabilities, disturbance estimation 
and rejection, and behavioral control opportunities such as targeted coaching to users [23, 24, 25].
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Figure 2.5: Schematic diagram of a medical IoT clinical system [23].

Decision Support Systems (DSS): Decision support systems (DSS) can operate in a stand-alone manner, or 
they can be embedded in closed-loop systems to provide enhanced clinical outcomes. For example, while 
commercial closed-loop systems are increasingly finding acceptance among individuals with Type 1 diabetes, 
the vast majority of individuals managing their glucose levels are doing so without closed-loop automation [26]. 
A good fraction of those individuals use devices that provide guidance and support for glucose management 
in the form of smart pens, continuous glucose sensors, advanced insulin pumps, and web portals [27]. These 
technologies can augment human decision-making in the form of warnings and alarms, glucose predictions, 
insulin dosing guidance, and more. Unlike closed-loop systems that automatically adjust insulin dosing, 
these systems can provide valuable guidance on fine-tuning an individual’s insulin regimen (e.g., adjustments 
to basal profiles or updates to carbohydrate ratios). These technologies can be embedded in web portals that 
integrate e-health and telemonitoring programs. Often, an engineering research system will be evaluated in 
a decision support framework prior to testing in a fully automatic mode. Such systems have demonstrated 
measurable improvements in clinical outcomes [28].

Neuroengineering

The new bridges between brain science and brain technology offer novel control science opportunities. Brain 
signals are dynamic and multiscale. Processing brain data and modeling brain functions must acknowledge 
those properties. Brain circuits are plastic, variable, and uncertain. Designing machines that interact with 
brain circuits must acknowledge those properties. Feedback is central to brain operation at any temporal and 
spatial scale, so controlling brain circuits must acknowledge those properties. Brain sensing and actuator 
technologies are booming, but the control theory of machines that interact with the brain is still in its infancy. 

eHealth Record Energy SavingWerable Computing
Resource 

Limited/EmbeddedMobile Health

Activity Tracker Low-Complexity Decision Support System

Diet Tracker

CGM

MD-in-the-loop

Location

Image

Calendar

Secure Communication

Medical IoT
Sensor Signals

Patient Centric

Medical/Self-Care
for Health/Wellness



29

Progress in brain medicine and in brain-inspired technology is expected but will be increasingly limited by 
the absence of a control theory of brain-machine interaction. For example, deep brain stimulation (DBS) is 
an approach to treating neurological and psychiatric disorders (such as Parkinson’s disease) by stimulating 
neurons in the brain with an implanted electrode. Broadly stated, neurostimulation relies on both measurements 
of patient state (e.g., limb accelerometers, EEG, single neuron recording) and an actuation stimulus (e.g., DBS, 
pharmacological agent) [29]. Current clinical approaches rely on open-loop stimulation protocols (duration, 
amplitude, frequency of a pulse train). However, recent short-term clinical studies show promise for closed-
loop strategies to automate the treatment [30, 31]. 

Over the years, a wide range of algorithms have been investigated, ranging from Proportional-Integral-Derivative 
(PID) to geometric control to adaptive controllers [30]. At the core of most algorithms being investigated is a 
method for learning and adapting the algorithm in response to the patient’s changing characteristics over 
the course of days, months, or years [31]. Commercial DBS systems from multiple companies (including 
Medtronic, NeuroPace, and Boston Scientific) have been approved by the FDA. Some of these are for open-
loop treatment, and at least one is for closed-loop treatment of Parkinson’s disease, dystonia, and obsessive-
compulsive disorder. Numerous challenges remain in developing safe closed-loop DBS systems, including the 
determination of reliable biomarkers (measurements), battery design, decision support systems, and control 
algorithm optimization.

Opportunities for control systems scientists and engineers exist within the field of neuroengineering beyond 
the application of DBS. We categorize these in three areas.

1. Neuroscience: New measurement devices provide neuroscientists with an unprecedented 
wealth of data covering a broad range of spatial and temporal scales. New modeling and analysis 
methodologies are needed to acknowledge the multiscale and dynamic nature of brain function.

2. Neuroengineering: New actuation devices lead to increased interaction between machines and 
brains that provide novel opportunities to restore impaired brain functions. Control theory is needed 
to acknowledge the closed-loop nature of brain-machine interaction, and new methodologies are 
needed to account for the spiking nature of brain signals.

3. Neuromorphic Engineering: Brain-inspired sensors, actuators, and computing devices offer novel 
opportunities to make artificial machines more like animal machines in their energy efficiency and 
attention capabilities. Reducing the carbon footprint of digital AI will be a major challenge in the 
forthcoming decades.

For more details and further discussion on neuroengineering, please see Appendix 2.B.

Closed-Loop Control of Medical Devices

The opportunities for closed-loop control of medical devices is much broader than the snapshot of applications 
summarized here, and they continue to grow. Researchers continue to explore novel control strategies for 
drug dosage for applications ranging from HIV to cancer. New directions are also revealed, motivated by 
the challenges of the COVID pandemic, such as the work of Sri Sarma and colleagues at Johns Hopkins 
University. They propose a solution to automate ventilator control to optimize levels of peripheral capillary 
oxygen saturation. Using data-driven linear parameter-varying (LPV) dynamical systems models, which 
relate patient clinical state and ventilator inputs to the output oxygen levels, the team proposes the design of 
controllers using linear matrix inequality (LMI)-based methods [32]. Below are a few scenarios that offer unique 
opportunities for our community and potentially impact healthcare and quality of life for broad populations.
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Automated Anesthesia: Closed-loop anesthesia systems have been researched, designed, and evaluated 
in the clinical setting for over 20 years. The operating room environment is quite complicated, with the 
need to monitor many critical variables on a real-time basis. However, a distinct advantage of this setting 
is that nonportable sensors can be employed that would be too cumbersome or impractical for ambulatory 
applications. The physiological variables that must be monitored include the depth of anesthesia (DOA), 
metabolic status, hemodynamic state, and other physiological conditions. The DOA has been the subject of 
intense research over the last two decades, and sensors are available to determine the depth of anesthesia 
through correlations. These sensors are inferential in nature. They do not directly measure the medical state 
of anesthesia, which is characterized by such patient responses as hypnosis, amnesia, analgesia, and 
muscle relaxation. Instead, they measure the state of electrical activity in the patient’s brain. A promising 
method is the bispectral index, derived from signal analysis of an electroencephalograph (EEG) [33, 34]. A 
commercial tool for translating EEG signals using wavelets to indicators for closed-loop anesthesia control 
is available (WAVCNS from NeuroSENSE) [35].

A variety of manipulated inputs are also available, resulting in an intrinsically multivariable control 
problem. Some candidate-manipulated variables include vasoactive drugs such as dopamine and 
sodium nitroprusside, as well as anesthetics (isoflurane, propofol, isofluorane, remifentanil, etc.). Like 
the developments with the artificial pancreas, a variety of control algorithms have been investigated with 
the primary categories being PID control, model predictive control (MPC), and rule-based control [33]. 
Pharmacokinetic/pharmacodynamic (PK/PD) models have been used directly in model-based schemes 
and indirectly in PID and rule-based designs that employ predictions of drug levels and use override safety 
systems [35]. Multiple simultaneous PID controllers have been clinically evaluated, with demonstrated 
improvement over manual control (as determined by postoperative cognitive measures), although the 
differential benefit of one control loop over the other could not be quantified [34]. Recognizing the need 
to have robust solutions across populations, recent work has also begun to explore the use of scaling 
principles to create a personalized PID algorithm that led to reduced interpatient variability [36].

Cardiac-Assist Devices: Cardiac-assist devices are mechanical pumps that provide cardiac output at 
an appropriate pressure that allows normal circulation of blood through the patient’s body, subject to the 
changing demands for cardiac output as a function of the patient’s state (e.g., level of exercise, emotion, 
posture, etc.). These devices are critical to the support of patients in the end stages of congestive heart 
failure [37]. The ideal device would mimic the body’s own mechanisms for maintaining cardiac output at 
target levels. However, the first-generation devices were rather primitive in terms of automation, requiring 
the patient to adjust the set point. One of the more challenging aspects of the control design problem for 
ventricular-assist devices is the correct anatomical placement of the sensors and actuators for individual 
patients and doing so to limit susceptibility to infection. The current generation of devices span catheter-
based interventions for short-term circulatory support all the way to long-term implantable pumps [37]. 
Most of the current devices on the market incorporate proprietary pump and flow control algorithms with 
scant details on the controller. However, recent results point to the growing availability of patient data that 
can be used to build predictive models of hemodynamic variables using AI-based and other methods (see, 
for example, Abiomed's devices [38]).
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Diabetes Devices—Connected and Automated: Insulin management or delivery can be divided into two 
main classes. Automated insulin delivery systems (AIDs) combine an insulin pump, CGM, and algorithm (see 
Figure 2.6 for a taxonomy of automated insulin delivery systems). Smart insulin pens or caps report the amount 
of insulin dialed and/or delivered to a clinical decision-support system (CDS). AID systems and smart pens 
are designed to improve glycemic control for people with diabetes and reduce the day-to-day burden and 
the decision-making around the amount of insulin that should be delivered. The FDA has already cleared 
several systems for use and others are under development by both commercial entities and individuals or 
communities like the DIY movement. Different feedback-control strategies ranging from PID and fuzzy logic to 
model-based and optimal control, are used and are embedded in the insulin pump or run as a mobile medical 
device in a smartphone [39].

Figure 2.6: Taxonomy of automated insulin delivery core design and options [39].

While great strides have been made with the artificial pancreas, numerous open challenges remain for 
continued research and development. All the current products are “hybrid” systems. They require the person 
with diabetes to estimate and program the bolus associated with meals. It is also fair to say that the current 
devices were designed to compensate for overnight excursions (i.e., avoiding hypoglycemia) as well as meal 
compensation (in a hybrid model). However, they have not been optimized to handle exercise and strenuous 
activities. 

There are myriad challenges with designing a dosing strategy during exercise, including the availability of 
suitable sensors and how to customize the strategy to the fitness of the individual. Another major challenge is 
distinguishing between exercise in a low-stress training mode versus exercise during a stressful competition. 
The former tends to deplete and lower blood glucose levels, while the latter can lead to elevated glucose 
levels, which block insulin receptors [40]. Consequently, an identical signature in activity-based sensors might 
require diametrically opposite compensation strategies in the two scenarios.



32

There are limitations to what a device can do that is extracorporeal, but there have been promising results with 
devices like the DiaPort that point to the promise of full automation [41]. Another striking observation about 
the artificial pancreas is that it is intrinsically a single-input (insulin), single-output (glucose) control system. 
Further advances are needed in developing sensors for implicated physiological variables (insulin, ketones, 
cortisol, lactate, etc.) that are sensitive at physiologic levels, can report in real-time, and can be designed 
for on-body use [42]. On the input side, there have been promising early results with glucagon as a counter-
regulatory hormone that might be dosed in tandem with insulin. There have also been studies of amylin in 
closed-loop systems where amylin modulates the meal (i.e., disturbance) response and allows insulin to more 
fully compensate for meal excursions [43, 44].

Recommendations

For young researchers: To help improve healthcare and quality of life, young researchers must do 
more than acquire strong analytical, quantitative, and qualitative skills. We encourage you to seek 
out and embrace transdisciplinary collaborations, continue to learn about equity and social justice, 
and always be inquisitive. Just because you can formulate and solve an optimization problem does 
not mean that you have the correct or best cost function. Further, it is essential to work hand in hand 
with professionals who have domain expertise, especially in healthcare. Finally, while this section 
has explored numerous research directions related to healthcare and quality of life, do not limit 
yourselves. Be creative and seek out other important, interesting problems that will improve the lives 
of individuals, communities, and/or society.

For funding agencies: The control community has played essential roles in innumerable fields over 
the last several decades and will continue to contribute, especially with respect to healthcare and 
quality of life. It is essential that funding mechanisms be of the scale and scope necessary to support 
cross-disciplinary teams that can cultivate complete, holistic solutions.
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Abstract Infrastructure systems are the basic physical and organizational structures and facilities that a  
society or enterprise needs to operate. They support planning, operation, and safety. In this section, we will 
highlight how advances in communication, sensing, and methods for interpreting data are enabling new 
capabilities for such systems. Built infrastructure systems are increasingly connected and are actuated, offering 
opportunities to increase resilience, sustainability, and performance. Digital transformation will make future 
infrastructure systems more interactive, dynamic, and integrated. By combining sensing, communication, and 
actuation at scales that have previously been out of reach, new high-performance infrastructures will emerge 
that can adapt and respond to the changes in the environment and needs of society. Such dramatic changes 
are primed for many societal-scale infrastructure systems. We provide a brief overview of the prospects and 
future challenges in several sectors, including transportation, energy, water, and food and agriculture. We 
further discuss why solving these societal-scale problems with smart infrastructure will require interdisciplinary 
collaboration across multiple domains beyond control systems. This may range from other engineering 
disciplines to public policy and administration.

2.C.1 Introduction

Infrastructure systems are the basic physical and organizational structures and facilities (e.g., buildings, roads, 
and power generation) that a society or enterprise needs to operate. Infrastructure systems have been around 
as long as urban centers, supporting a society’s needs for its planning, operation, and safety. Advances in 
communication, sensing, and methods for interpreting data enable new capabilities for designing, managing, 
and operating infrastructure systems. Built infrastructure systems are increasingly connected and are actuated, 
offering opportunities to increase resilience, sustainability, and performance of critical systems that support 
society. Facilitating this transformation while recognizing the unique needs of each community is important to 
meet the growing complexities and needs of future infrastructure systems.

2.C Smart Infrastructure Systems

Dan Work, Carlos Canudas de Wit, Masayuki Fujita, Hideaki Ishii, 
Karl H. Johansson, Anuradha M. Annaswamy

Infrastructure systems such as those in transportation and energy are primed for digital 
transformation that will enable new capabilities through advances in communication, sensing,  
and methods for interpreting data. We discuss novel challenges in building smart infrastructure due 
to the complexity of societal-scale problems as well as opportunities to contribute to  
solutions through interdisciplinary research
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While today’s infrastructure systems are largely static, infrastructure systems of the future will need to be 
interactive, dynamic, and integrated. While today’s systems are physically coupled, they are often managed 
independently, which does not allow interdependencies to be exploited. Future infrastructure systems will 
combine sensing, communication, and actuation at scales that have previously been out of reach, enabling 
new high-performance infrastructure that can adapt and respond to a changing environment and changing 
societal needs.

2.C.2  Drivers: Infrastructure Systems Undergoing  
Digital Transformation

Many societal-scale infrastructure systems are primed for digital transformation, including transportation, 
energy, water, and food and agriculture (see Figures 2.7 and 2.8 for a few examples). The same technologies 
used to advance smart infrastructure will also help develop a smart society.

Transportation

Smart transportation systems are well-positioned for dramatic breakthroughs in performance. The widespread 
adoption of smartphones, which began about 15 years ago, helped unlock personal navigation, real-time 
traffic monitoring, new ride-sharing services, and more. While commuters are connected through advances in 
smartphone technology, the vehicles themselves and the infrastructure (e.g., traffic signals) do not share this 
same level of sophistication. Commercial vehicles are sold worldwide with Society of Automotive Engineers 
level 1 and level 2 automation capabilities, but true “brain-off” driving has not yet matured into a commercial 
technology. There is a large gap between simple automation technologies that are easy to use and offer 
correct modalities and advanced machine learning approaches that can enable transformative performance 
but often introduce brittle failure modes. Moreover, today’s commercially available automated vehicles operate 
independent of the infrastructure and of other vehicles. Emerging 5G technologies will soon break the current 
paradigm and open possibilities where cooperative driving and cooperative infrastructure can improve safety, 

Figure 2.7: Multimodal transportation systems 
are undergoing a significant technology transition 
to meet mobility system performance needs of 
society. Image Source: USDOT Strategic Plan.

Figure 2.8: Water networks are beginning to 
include sensing and actuation to improve 
sustainably. Image Source: USDOT Water 
Lab, University of Michigan Strategic Plan.
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reduce emissions, and improve overall transportation efficiency. Creating the estimation and control techniques 
to manage mobility infrastructure at a societal scale is a core challenge for the coming decade.

Water

Population growth, urbanization, and climate change are dramatically increasing the demand for water systems 
and driving the need for a holistic, intelligent decision-making framework for managing water infrastructures. 
At the same time, the availability of new, cheap, and accurate sensing and actuation devices opens the 
possibility to significantly improving our understanding of the needs and operational constraints of today’s 
water networks. By increasing the availability of data describing the water network, it becomes possible to 
create new data-driven tools for automating decision-making in the design, monitoring, control, and security 
of urban water systems. The multidisciplinary design and analysis of monitoring and control methods for 
smart water systems will open new possibilities to extract efficiencies that are out of reach for today’s water 
networks. Possible enabling technologies include new approaches for state estimation of water hydraulics; 
detection and isolation of water leaks; water pressure control; water quality state estimation; water quality 
control; water contamination fault diagnosis; emergency response to water contamination events; and cyber- 
physical security of water systems.

Energy

Meeting the global energy demand while simultaneously addressing the environmental impact of energy 
production infrastructure is a key challenge of our time. Power systems, where innovations in the use of solar 
and wind renewable energy started in the late 2000s, may lead in the transformation to smarter infrastructures.

Power networks are becoming increasingly hard to manage because of the large number of suppliers. This 
makes it difficult to plan, dispatch, and balance supply and demand. Demand management solutions like 
dynamic pricing can help influence consumer electricity use to respond to the intermittent generation of 
renewable energy. While electric vehicles can contribute by bringing more batteries to the system, power grids 
must prepare for a world in which large portions of the ground transportation infrastructure will move from 
internal combustion to plug-in electric technologies—a dramatic shift that will occur over the next decade. 
Better modeling, connectivity, sensing, and communication are needed to address a significant expansion in 
the complexity of the power grid while simultaneously meeting a wider range of performance targets.

Agriculture & Food

Key challenges facing agriculture and food stem from the need to improve crop yield and increase the reliability 
of the food supply chain to reduce food loss from the farm field to the table. Food production must dramatically 
increase to meet the needs of a global population that continues to grow. 

The importance of the food supply chain is easy to identify by recognizing that agriculture plays an important 
role in many of the 17 Sustainable Development Goals adopted by the United Nations [45]. Notably, Goal 2 is 
to “End hunger, achieve food security and improved nutrition, and promote sustainable agriculture.” One major 
challenge to meet this goal is that current resource-intensive farming paradigms have proven to not be scalable 
due to their enormous environmental impacts that cause deforestation, water scarcity, and greenhouse gas 
emissions. Consequently, new approaches are needed to revolutionize the current practices of agriculture. 
This might result in completely new forms of agriculture such as agriculture forestry, intercropping, and vertical 
farming. Alternatively, it may require that agriculture become more efficient by moving to technology-enhanced 
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precision agriculture in order to increase the production of highly nutritious foods at minimal environmental 
impact. These improvements should go hand in hand with increasing the sustainability and efficiency of the 
food production chain. Control technologies can contribute to these goals in the development of advanced 
machinery, data-gathering and processing infrastructure, automated decision-making schemes, and precision 
agriculture.

Beyond Infrastructure: Toward a Smart Society

A smart society is a human-centered society that aims to solve societal problems through a system that 
integrates cyber and physical resources. It is enabled by many of the driving technologies facilitating smart 
infrastructure, but it is more broad in scope and potential impact. A smart society connects all people, things, 
and systems through information networks, and a variety of knowledge and information is shared to enable 
the society to overcome various challenges. In a smart society, advanced methods will provide people with 
information when needed, and automated technologies are expected to solve various problems. For example, 
automated technologies will do tasks and make adjustments that humans have performed. The new value 
created by innovation will eliminate disparities based on region, age, gender, language, and other factors, 
enabling a finely tuned response to individuals’ diverse and latent needs. Social well-being will be improved 
for everyone by promoting fairness, inclusivity, and trust. When data is used, the privacy of the individual is 
respected. When services are designed, they support the needs of all citizens rather than exacerbating the 
digital divide. Although smart society initiatives are beginning, most are still in the verification stage within 
individual cities/regions. Many opportunities are yet unexplored.

2.C.3 Opportunities for Control

Resilience & Robustness

While these and other societal infrastructure systems are facing extreme challenges that drive needed 
innovation, it is important to recognize that they do not operate independently. For example, future freight 
transportation systems will be electrified, placing new demands on the power grid. These same transportation 
systems are responsible for moving goods and people, including vital assets in the food supply chain. The 
increased demands on the power grid will increase demands on the water needed for cooling. Water networks 
require more energy to deliver water to population centers affected by climate change. Building methods to 
advance the management of coupled infrastructure systems without simultaneously creating destabilizing 
feedback loops will require new design and control approaches to manage the critical infrastructure systems 
of the future.

Convergence

One of the key opportunities of control is to study how societal drivers such as smart infrastructure systems 
or their integration influence individuals, groups, or society. These systems are highly interactive and affect 
people’s everyday lives, requiring new techniques in building algorithmic models of human behavior at 
different levels of fidelity (such as individual or societal-scale models). This also creates an opportunity for 
interdisciplinary research between control theory and other fields in behavioral economics, cognitive science, 
or human computational modeling. Techniques that capture human bounded rationality, rational inattention, or 
models of decision-making along with data-driven approaches such as imitation learning or preference-based 
learning can enable building computational models of human behavior. Although these models are effective 
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for prediction, they are often not sufficient for interaction as they do not capture the closed-loop dynamics 
of interaction between humans (or groups of humans) and smart infrastructure systems. Control theory can 
potentially provide approaches for leveraging and improving human behavior models in a closed-loop manner, 
as well as a formal approach for analyzing equilibria that can emerge from interactions between humans and 
these intelligent systems during closed-loop, continual, and repeated interactions.

Multiscale Modeling & Control

The development and operation of smart infrastructures often require the orchestration and control of the 
emergent collective behavior of large ensembles of entities or agents (e.g., sources and sinks in a power 
network or intersections and autonomous vehicles in a transportation network) interacting with one another 
in a nontrivial way over a complex graph. Steering the behavior of these large-scale complex systems can be 
achieved by controlling the nodes of the network, endowing the edges with some dynamics or communication 
protocol, or manipulating the structure of the network itself. The problem then becomes understanding how to 
close the feedback loop across different scales. Typically the problem is to control the emergent behavior of 
the network system or infrastructure of interest at the macroscopic scale while acting on the nodes, the edges, 
or the network structure at the microscopic scale. A feedback connection needs to be established between 
the sensed or estimated macroscopic behavior of the ensemble and the action (or actuation) that needs to be 
taken at the microscopic level to steer the resulting collective dynamics in a desired direction. From a control 
viewpoint, such complex network systems are examples of large-scale dynamic systems consisting of many 
continuous- or discrete-time units interacting over a web of complex interconnections that can be either static 
or time-varying.

A key opportunity for control is to address the open challenge of understanding how to close the loop across 
different scales. This can be achieved by developing new decentralized and distributed estimation, control, 
and optimization strategies to endow agents at the microscopic level with the ability to sense and control the 
emergent macroscopic behavior stemming from their collective dynamics. This requires extending to this class 
of systems analysis and synthesis strategies from classical control theory (e.g., controllability, observability) 
without neglecting the often nonlinear, uncertain nature of the agent dynamics and the time-varying, evolving 
nature of the underlying network of interest. Another fundamental problem is to analyze and prove convergence 
of the controlled network system to certify its stability and robustness. A further opportunity for control is the 
use of data-driven and learning-based control strategies (e.g., multi-agent reinforcement learning). These may 
become fundamental in solving these types of problems because model-based approaches can be unable to 
cope with the multiscale, uncertain, and complex nature of the problem of interest.
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2.C.4 Recommendations

• Promote convergence research. Solving smart infrastructure problems will require collaboration 
across multiple domains beyond control systems. These collaborations will include other engineering 
disciplines, public policy, and administration. Acknowledging the needs and role of humans in 
developing these systems will also expand the interdisciplinary frontier.

• Expand R&D funding and experimentation sites. Many smart infrastructure systems are critical 
to the well-being of society, and it is not possible to easily experiment on these systems without 
degrading day-to-day operational performance. R&D funding is needed to expand realistic testbeds 
and test facilities to produce critical datasets and validate new methodologies. 

• Expand collaboration with industry and government partners. Many critical infrastructure systems 
are operated by government agencies in the public interest but depend on scalable technologies from 
industrial partners. Collaboration by academic, government, and industry organizations can leverage 
complementary areas of expertise that can help accelerate the pace of designing and deploying new 
innovations for these systems.
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Abstract Sharing Economy is an economic model that transitions the current economy from owning (sole 
possession) resources to accessing them (sharing) only when required. While the benefits are numerous, 
this transition also entails multiple challenges and considerations, including privacy, safety, security, fairness, 
risk, market distortion, and strategic behavior. Control-theoretic methodologies are well suited to address 
many of these challenges, specifically those that involve effectively managing constrained resources at both 
the aggregate (societal) and individual user levels. We argue that the Sharing Economy can be viewed as a 
feedback control problem in which individual agents make up the plant and the control allocates the constrained 
resource among agents. In such a framework, markets may be designed so consumers can exchange goods 
and services in a peer-to-peer context using mechanisms such as transactive control. System and component-
level decisions would be made with economic transactions negotiated between the components of the system. 
The management and design of shared services, while preserving privacy, is also an area familiar to control 
engineers, where the goal is to develop infrastructure and algorithms to support sharing a pool of objects in a 
community. A unique feature of the Sharing Economy is the importance of fostering compliance through the 
design of social contracts using new cooperative control tools and modeling human behavior in a closed-loop 
system. Game theory has an obvious role in developing compliance mechanisms, including access control 
and adversarial settings.

2.D.1 Introduction

The Sharing Economy is an economic model that transitions from owning resources to accessing them only 
when required. This transition is a consequence of dwindling resources and a higher cost for those resources. 
This in turn makes it necessary to embrace circularity, monetizing assets that are not being fully used. It 
requires a multitude of concomitant changes in how business is conducted, how the infrastructure is designed 
to support collaborative consumption, and how user behavior adapts at both individual and aggregate levels 
(see Figure 2.9). Examples of the Sharing Economy abound in every sector of the economy: transportation 
network companies (e.g., Uber, Lyft) and vehicle sharing (e.g., Zipcar), peer-to-peer lodging platforms (e.g., 
Airbnb, Vrbo) in the service industry, microfinance institutions (e.g., Sardex, Prosper), co-working to share 
office or product storage space, and reselling/trading platforms (e.g., eBay, Craigslist). 

2.D The Sharing Economy

Christos G. Cassandras, Robert Shorten, Anuradha M. Annaswamy

The Sharing Economy is a disruptive paradigm based on replacing traditional notions of ownership 
with mechanisms based on sharing/on-demand access. Ideas central to this emerging discipline 
resemble many system-theoretic concepts. Thus, systems and control concepts and methods 
have an important role to play in managing shared resources and in efficient market design.
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In the energy sector, the Sharing Economy occurs, albeit indirectly, between the power grid infrastructure 
and the building infrastructure, through the notion of flexible consumption serving as a negative load. Peer-
to-peer trading mechanisms are also emerging between electrical energy and thermal energy networks to 
ensure adequate resources for both heating and electricity. Potential exists in introducing such transactive 
mechanisms between the electrical network and the train network to leverage the same notion of flexible 
consumption. The interest these new economic paradigms has attracted for both industrial applications and 
broader societal adoption is well documented [46, 47, 48, 49, 50, 51].

Figure 2.9: Overview of a Sharing Economy system.

The motivation for a Sharing Economy is multifaceted. For starters, many consumer resources have extremely 
low use (e.g., the average car use is about 4%). Sharing this resource for on-demand use can dramatically 
reduce the cost of ownership, including insurance and maintenance. Globally, competition for resources is 
intense, driven by an expanding gray community and middle class. In the face of such pressure, sharing 
resources would appear to be one tool that would allow living standards to be maintained, or even increased, 
in the face of constrained resources. 

From a societal standpoint, reducing the number of certain resources, such as pollution-generating vehicles, 
can benefit the environment. It is worth noting that managing access to shared resources, as opposed to 
building more efficient devices, will be a central pillar in the fight against global warming. William Jevons 
noticed in the 19th century that developing new, more efficient technologies often stimulates more aggregate 
demand and counteracts the impact of new technology. Pollution in our cities and our insatiable demand for 
energy readily yield, at least in part, examples of this effect, known as the Jevons paradox. For example, the 
fact that cars are rated on per device emissions factors ignores the impact of this effect and allows major 
technology providers to ignore the aggregate impact of their devices. Using control theory to manage access 
to shared assets is a fundamental tool to combat the effects of Jevons paradox.

A Sharing Economy also offers access to resources that might not be feasible or practical to own (such as a 
car) or to obtain (such as a bank loan) without assuming prohibitive amounts of risk. At the same time, features 
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intrinsic in sharing platforms, such as ratings and reviews, contribute to building stronger user communities. 
This keeps both providers and consumers honest, promoting interpersonal collaboration and even using a 
platform’s influence to assist those in need (e.g., Airbnb coordinating free accommodations for people affected 
by natural disasters). Moreover, a Sharing Economy is greatly facilitated by technological developments 
that enable ubiquitous networking and easy access to platforms that coordinate resource sharing and build 
constructive relationships where none existed before. 

It is important to recognize and pinpoint the fundamental differences between the operation of a Sharing 
Economy (also referred to as collaborative consumption) and current practice. One such difference is that 
many resources and services are not centrally created but may often be produced by consumers, leading to 
the emergence of prosumers [52, 53, 48]. An example is the use of a parking space consumed when one uses 
it for their own vehicle and then produced as a resource for somebody else. Although joint production and 
consumption itself is not new, the scale at which it is now being carried out is unprecedented in the volume 
of transactions, number of people involved, and the granular nature, both in space and time, of the resources 
shared.

With the benefits of a Sharing Economy come numerous challenges, many of which constitute problems that 
can be squarely addressed using approaches intimately familiar to the control systems community. Those 
challenges include:

Privacy, Safety, and Security: In the networked environment required for information sharing, privacy and 
safety concerns arise similar to those already extensively studied in the context of CPS. These take center 
stage in the context of the Sharing Economy as they become more complex due to the presence of multiple 
owners.

Market Distortion: The introduction of multiple ownership, as well as new mechanisms such as peer-to-
peer markets, is a complex systems problem. When a peer-to-peer marketplace is established within an 
already existing traditional marketplace, the latter often experiences new kinds of short-term disruptions (i.e., 
instabilities), as seen in some housing markets (due to Airbnb) or urban transportation (due to Uber and Lyft). 
Such short-term instabilities may have to be analyzed and understood.

Fairness: Since the Sharing Economy critically depends on access to information through networking 
technology, this can result in fairness concerns regarding the availability of this technology to all societal groups 
and the way this could be manipulated. This and related concepts, such as energy justice, are becoming 
increasingly important and can be analyzed through the systems and control lens. In addition, fairness includes 
respecting the preferences of individual agents or groups when resources are allocated.

Risk: In many ways, replacing ownership with sharing entails a much higher degree of risk. As a prosumer, 
one faces the risk of not being properly compensated for a resource or suffering damage to that resource by 
those who consume it. The effective management of risk is a critical issue in a Sharing Economy. This includes 
risk to the individual and collective actions, which have the potential to spread risk over groups of prosumers.

Gaming, Collusion, Cooperation, and Other Strategic Behavior Considerations: Cooperation is synonymous 
with sharing and is a cornerstone of the multi-agent dynamic system that forms the backbone of an effective 
Sharing Economy. At the same time, the presence of multiple owners and prosumers introduces several 
challenges, including gaming, collusion, and overall strategic behavior. All of these aspects are important 
features of a multi-agent dynamic system and have to be investigated. Moreover, this has to be done while 
recognizing the time-varying nature of the decision processes involved.
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Despite these challenges, it is clear that the market forces driving the emergence of a Sharing Economy are 
irresistible, and many large corporations are moving quickly to embrace the opportunity to develop new shared 
services. A striking example is the automotive manufacturer Riversimple, whose vehicle components may be 
owned by different entities. 

Many ideas that are familiar to the control community are central to these market forces. Control-theoretic 
methodologies are well-suited to address many of the challenges that arise in Sharing Economy applications 
and business models, specifically those that involve the effective management of constrained resources at 
both the aggregate (societal) and individual user levels. The use of feedback, as an example, is a tool that can 
be used to deal with Jevons paradox, where technological innovation may result in unintended consequences 
due to increased aggregate demand for certain resources that would counteract the effect of sharing them [54] 
(also sometimes referred to as the rebound effect).

2.D.2 The Sharing Economy and Control

Interest in the Sharing Economy is being accompanied by innovation in three broad areas: new business 
models, enabling technologies, and analytics. Systems and control theory have a role to play as new ideas 
emerge across all three areas. At a very basic level, control is an essential component of the design of 
Sharing Economy systems. Sharing a constrained resource involves regulation where there may be additional 
complexities, such as determining the set-points. Sometimes, these problems rise to brand new classical 
problems in control or classical problems but new human-centric constraints that may seem unfamiliar to 
practitioners.

At a fundamental level, the need for control arises for two reasons. First, the Jevons paradox (the fact that new 
technologies can stimulate demand to improve efficiency) manifests itself in many of the important problems 
that we are interested in solving (such as pollution in our cities, greenhouse gas emissions, and even poverty). 
Such examples can be also readily found in other domains, and one approach to address the Jevons paradox 
is to manage the aggregate effect of human behavior as part of the system being designed. This involves 
acknowledging the fact that resources are always constrained and should be shared, and that sharing them 
can be managed by treating sharing as a combined multilevel optimization and control problem. In the case 
of vehicle pollution, the safe level of aggregate emissions could, for example, be treated as the resource to be 
shared among drivers in the city [55, 56]. 

In terms of novelty from a control perspective, the feedback loop must be designed to account for the human-
centric constraints of the ensemble being controlled—such as fair access to the resource and guaranteed 
quality of service for individual users. In general, most problems that arise in a Sharing Economy can be 
cast in a framework where a large number of agents, such as people, cars, or machines, often with unknown 
objectives, compete for a limited resource. The challenge is to allocate this resource in a manner that is not 
wasteful, gives an optimal return on the use of the resource for society, and gives a guaranteed level of service 
to each of the agents competing for that resource. The primary problem in this framework is one of matching 
supply with demand and doing so in a way that provides adequate stability and resiliency.
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Figure 2.10: Sharing Economy system as a feedback control problem. Individual agents make up the plant and 
the control allocates the constrained resource among agents [57].

This gives rise to a whole host of problems, which, in principle, are best addressed in a control-theoretic 
manner. First, we want to fully use the resource, which is a regulation problem. Second, we want to make 
optimal use of the resource. While both of these objectives are concerned with the aggregate behavior of an 
agent population, they do not attempt to control how agents individually orchestrate their behavior to achieve 
this aggregate effect. Therefore, the third objective must focus on the effects of the control on the microscopic 
properties of the agent population. Ultimately, this third objective can be phrased in terms of properties of 
the (generally stochastic) process capturing the share of the resource that is allocated to an individual agent. 
For example, we may wish that each agent, on average, receives a fair share of the resource over time. At a 
more fundamental level, we wish the average allocation of the resource to each agent over time to be a stable 
quantity that is entirely predictable, does not depend on initial conditions, and is not sensitive to noise entering 
the system. From a control perspective, the challenge is to design the feedback mechanism in a way that the 
stochastic system is ergodic and in a manner in which the invariant measure can be shaped to have desirable 
properties (see Figure 2.10 for a schematic of the overall feedback control problem).

Regarding the design of the feedback control system, these latter concerns are related to the unique invariant 
measure (assuming agents behave stochastically) that governs the resource distribution among the agents. 
Thus, the design of feedback systems for deployment in multi-agent applications must consider not only 
the traditional notions of regulation and optimization but also the guarantees concerning the existence of 
this unique invariant measure. This is not a trivial task and many familiar control strategies, even in very 
simple situations, do not necessarily give rise to feedback systems that possess all three features [57]. This is 
especially the case when one considers the design of two-sided markets. 
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ŷ(k)

y(k)

C

F
S1

S2

SN

y1(k)

y2(k)

yN (k)



44

Finally, it is important to point out that often non-Sharing Economy agents seek to optimize their individual 
(selfish) performance with no concern for the aggregate (social) system performance. In other words, agents 
compete for resources rather than cooperate, as is in a Sharing Economy. It is well known that a cooperative 
optimum (maximizing a social welfare function) is better than the equilibrium achievable through individual 
optimality. This difference is reflected through what is known as the Price of Anarchy, which can be explicitly 
quantified in instances where data are readily available, e.g., in transportation systems [58].

2.D.3 Where Can Control Make a Difference?

The Sharing Economy gives rise to many issues that are of deep interest to the systems and control community. 
After all, sharing is both about regulation of a resource and giving a community (or pool of agents) fair access 
to this shared resource. In terms of mathematical system construction, several distinct directions of Sharing 
Economy systems have emerged that are directly relevant to the control and systems community. We list some 
of these which are perhaps less conventional from a systems and control perspective.

Peer-to-Peer Market Design: This type of Sharing Economy system emerges in the context of prosumer 
markets where consumers can exchange goods and services in a peer-to-peer context. The design of peer-
to-peer markets is a fertile ground to apply ideas from mechanism design, game theory, distributed ledger 
technology, consensus, distributed optimization algorithms, optimal transport, and the stable marriage 
problem. Work on the design of such markets will be familiar to most control engineers and is being undertaken 
by many, especially given the contemporary interest in consensus problems. [59, 60]. A critical issue and 
frontier topic in the design of peer-to-peer markets concerns the exchange and sharing of data. Data is unlike 
other shared resources because it is easily copied and replicated. While recent work by eminent researchers 
[61, 62] has attempted to design such markets, much work remains to be done. This sharing of and shared 
valuation of data problem is of considerable interest to industry, and is perhaps one of the problems that is 
currently most pressing. It brings together ideas from peer-to-peer market design [60], distributed ledgers, and 
economics, like the Shapley value [63].

Transactive Control: This distributed control strategy is another emerging tool that may be used to design 
shared economies. Because the consumer plays an active role and can carry out decisions that impact the 
overall Sharing Economy system, the question is about the actual signal from the infrastructure to which 
the consumer responds. Transactive control is defined broadly as a mechanism through which system and 
component-level decisions are made through economic transactions negotiated between the components 
of the system [64]. It is being explored in depth in the context of a smart grid [65, 66] and smart city 
infrastructures [67, 68]. Given that transactive control provides an opportunity to design a closed-loop system, 
the specific feedback mechanism of the underlying transactions needs to be suitably designed. It also needs to 
accommodate both the consumers’ behavioral model and the infrastructure managers’ economic objectives. 
A plethora of challenges remains to be addressed, as a result, pertaining to cooperation and coordination of 
multiple consumers and organizations, dynamic traffic design, constraints on all entities that are involved in 
the underlying transactions, and dynamic modeling and accommodation of multiple time scales associated 
with the problem. No matter the market structure used to design the overall shared economy (peer-to-peer, 
bilateral, auction, or others), the underlying coordination between multiple stakeholders may be through 
economic transactions, and therefore through transactive control.
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Management and Design of Shared Services: The second emergent area very familiar to control engineers 
concerns products and services that are designed to be shared. Here, the basic idea is to develop both the 
infrastructure and algorithms to support the sharing of a pool of objects in a community. The most basic 
elements of designing a shared service are its dimensioning and management. At a very high level, the key 
questions here concern how many shared items are needed to deliver a certain quality of service (QoS) to the 
community and/or which users should collaborate to create a sharing system. 

On the one hand, problems of this nature often reduce to classical problems in queuing theory which are 
familiar to the control theory community, but with additional constraints [69, 70]. First, the dimensioning 
problem is often coupled with the supply-demand statistics, and in some cases, can even influence them. 
Additional complications arise when sharing systems are themselves coupled. 

Further complications are intrinsic to the nature of sharing. For example, a fundamental problem is ensuring 
that all agents, on average, receive an equal QoS over time. Fairness problems of this nature are common in 
the networking and AI communities but are rarely discussed in control, despite their obvious connections to 
consensus and optimization. Further complications emerge as algorithms are developed to manage access 
to the shared resource, especially when requests for this resource are synchronized over its users. Pricing 
strategies to manage situations of this nature, especially in the context of polluter-pays (personalized pricing)- 
type models, are an interesting opportunity for the control community, especially when considering the need 
for personalized interventions [71].

Management and Design of Social Contracts: The issue of compliance and the design of social contracts 
using new technology bricks such as digital ledgers, digital companions, and digital twins are central to the 
design of Sharing Economy systems. Compliance refers to a situation in which we try to encourage (rather 
than fully control) how agents interact with their environment. For example, in a Sharing Economy application, 
one might wish to ensure that a shared vehicle is returned to the shared pool at a certain time. Another 
example of a social contract is the requirement that plastic bottles be returned to the point of sale after use. 
In Germany and other countries, bottle deposits are used to encourage consumers to adhere to this social 
contract. However, the minimal deposit is not large enough to encourage good behavior, and the plastic bottles 
end up in waste bins. This effectively creates a bounty for anybody willing to sort through public rubbish bins 
to find discarded bottles. So rather than incentivizing responsible behavior, the enforcing this social contract 
incentivizes others (who often belong to the most vulnerable in society) to sort rubbish. Often, they must collect 
many bottles just to make minimum wage, and the sorting ecosystem becomes a modern form of exploitation. 
In the case of bottle deposits, the enforcement mechanism is fragile. It creates a de facto currency that anyone 
can redeem. It does not place a high enough price on the deposit to incentivize compliance. It also does not 
apply differential penalties to miscreants depending on levels of personalized compliance. 

A further issue in such systems is that they can be attacked by resource-rich nefarious actors. Anyone with 
enough resources and bad intent could attack the entire system by simply dumping many plastic bottles 
in the ocean, resulting in an increased deposit for everyone. Game theory has a prominent role to play in 
developing compliance mechanisms, where uncertainties and variations in the players’ preferences, changes 
in decision-making through observation of other players’ behavior, and collective player actions are features 
that need to be considered. Ultimately, such compliance mechanisms are implemented through the use of 
specific incentives, to achieve a good equilibrium. Recently, ideas from control theory have emerged as an 
alternative to these classical mechanisms and offer very interesting directions for the control community [71].
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Privacy Preservation: The major impediment in solving the above-mentioned problems is related to the 
inability to assign deposits to individuals. If one could do this in a privacy-preserving manner, we could create 
systems in which only those purchasing goods could redeem deposits. We could also create personalized 
interventions based on differential penalties and be able to price the risk of misbehavior accordingly. However, 
enforcing social contracts and nudging people to comply with rules for the greater good is a delicate and 
complex task. In particular, using privacy-invasive mechanisms to micromanage behavior is unacceptable and 
might lead to dangerous scenarios in which a centralized authority violates the rights of individuals. How is it 
then possible to mitigate the risks while still maintaining the advantages for the community? One technology 
that offers great potential in this context is distributed ledger technology, especially when combined with 
control theory to manage group behavior. Building on these new disruptive technologies to implement secure 
personalized control strategies may be of great value in several nontraditional application domains for the 
control community.

Modeling of Human Behavior In a Closed Loop: A significant opportunity for control theory in the context of 
the Sharing Economy concerns modeling ensembles of human behavior and designing both recommendation 
platforms for users and algorithms to orchestrate their behavior [57]. The need for suitable microscopic and 
macroscopic models, of ensembles of human behavior, is essential for control design. Interesting challenges 
arise in this context as the scale of such ensembles is often large (much larger than typically addressed by the 
control community), but often not large enough to be treated as a fluid. In many cases, these systems also 
involve very large populations of humans interacting with the assistance of algorithmic systems. Fundamental 
questions arising in this context include how to model such systems, understand their equilibrium behavior, 
and design robust strategies to optimize their fairness and efficiency. 

Because these systems are often inherently stochastic, it is important to ensure that they give rise to “good” 
invariant distributions. This requires distributions that are reasonably fair (e.g., the same user is not always 
denied access to a bike when there is a shortage of supply at a given location). It is also important to 
understand how to design control algorithms for such systems. Furthermore, in sharing systems, consumers 
and producers often make decisions on the basis of predictions and under the influence of software agents. 
However, such predictions must consider the fact that people will be taking actions based on them, since 
these actions themselves affect the predictions [72].

Two specific modeling methods for human behavior are worth mentioning here: utility theory [73] and prospect 
theory [74, 75, 76]. Human decision-making is normally assumed to be based on the optimization of an inherent 
function of utility. When significant uncertainties are present in the underlying problem (e.g., random shocks), 
the modeling framework needs to be stochastic and employ distorted perceptions of the underlying outcomes 
and probabilities. These are the tenets proposed in prospect theory [74] leveraged for modeling empowered 
consumers in power grids and shared mobility [75, 76].

The challenge of including humans in closed-loop control systems goes beyond the Sharing Economy and 
comes up in several chapters of this report where societal drivers and specific methodologies are discussed. 
It remains to be determined whether explicit models of human behavior should be developed, as opposed to 
learned human behavior characteristics that can be used to design controllers without the need for detailed 
models.
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Access Control and Adversarial Settings: The final, and perhaps the greatest, opportunity for control 
engineers is connected to the technology platforms that enable much of the Sharing Economy. Technologies 
such as blockchain or other distributed ledgers enable platforms for peer-to-peer sharing and exchange of 
resources in a trustworthy manner without the need for a centralized authority. They also enable a host of 
personalized signaling strategies to achieve regulation of large-scale ensembles of humans. The opportunity 
for the control community here is immense, both in using and designing such technologies. The use of 
distributed ledgers in a control context is in its infancy, and much of the technology itself is based on control 
theoretic concepts (access control). The de facto mechanism for achieving access control in such systems is 
called proof of work (PoW). This mechanism is now giving way to advancement in FPGAs. Revisiting PoW-type 
mechanisms and the security of such ledgers from a control perspective may greatly benefit in the design of 
such systems. Analysis of these systems from a system-theoretic perspective could provide guarantees for 
use in control design [77, 78, 79].

2.D.4 Long-Term Challenges

In a modern context, sharing is a very disruptive paradigm for businesses across many domains. The impact 
of the Sharing Economy in the peer-to-peer mobility and accommodation markets and the proliferation 
of startups focusing on collaborative consumption are testimony to the potential impact that sharing can 
have on our daily lives. However, despite of the successes, many challenges remain to be addressed as the 
Sharing Economy matures. A much-discussed side effect of the Sharing Economy is the potential for worker 
exploitation and poor ethical standards that have emerged due to the so-called gig economy [80]. While this 
is undoubtedly a result of poor behaviors on the part of some Sharing Economy business owners, it is also 
due to the fact that advances in technology, analytics, and business models have moved at a much faster 
pace than the legal models providing oversight for Sharing Economy systems. Legal scholars are grappling 
with new notions of ownership, federated and collective risk and responsibility, insurance, taxation, and the 
rights of individuals in the context of these new methods of conducting business. Another detrimental aspect 
of the Sharing Economy comes from the unintended consequences that may emerge. For example, the peer-
to-peer accommodation model has increased real estate prices and rents as well as gentrification in large 
cities worldwide. Other challenges include sharing cyber-physical objects (devices that have both a physical 
and digital footprint), enabling a machine-to-machine Sharing Economy and enabling a Sharing Economy that 
involves both humans and machines. Finally, it is worth noting that the Sharing Economy, and the circular 
economy [81] have much in common. Developing these synergies is also likely to be a fruitful endeavor for the 
control engineering community.
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Recommendations

For young researchers: Engineers are often at the forefront of making more efficient devices but can 
ignore the stimulus these provide to economic consumption. Future business models will increasingly 
seek to decouple economic growth from increased consumption. Control theory has much to offer in 
this context through the design of systems that govern where access to resources in an efficient and 
just manner. New generations of control engineers must expand the networked multi-agent system 
setting to capture agent interaction and cooperation in a dynamic resource-sharing environment. The 
Sharing Economy system poses a feedback control problem where controllers function as intelligent 
allocators of limited resources among agents that strive to turn what is presently a competitive 
dynamic game into a dynamic cooperative game, respecting all participants. In this context, new 
research is needed to explore Sharing Economy systems that address the problem of co-designing 
technology and human behavior.

For funding agencies: Funding agencies should recognize that a Sharing Economy with  
well-designed resource management systems is at least one promising way to address our 
societal sustainability problem of limited resources and the environmental impact of uncontrolled 
resource utilization. Overarching research goals should focus on turning the proven power of 
feedback control for dynamic systems into a tool for effective resource management and converting 
competition into cooperation over the use of resources. This requires a better understanding of 
how to model human behavior in a closed-loop system environment, study how equilibrium can  
be attained in such settings, and design robust strategies to optimize fairness and efficiency,  
which are often in conflict.
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Abstract Today’s societal-scale systems face several risks. These include uneven economic recovery in the 
aftermath of the pandemic, environmental risks (climate action failure, extreme weather, natural resource crises), 
technological risks (attacks to strategic infrastructures, loss of trust in digital systems), and societal risks 
(livelihood crises and public health issues). The control systems science and engineering community can lead 
and collaborate with government and private sector entities to incorporate resilience in societal-scale systems. 
We are well-positioned to contribute tools for effective and timely management of disruptions in various 
sectors such as supply chains, manufacturing, transportation, and energy infrastructures. In doing so, we can 
leverage emerging regulatory levers and principled data-driven methodologies to limit the negative impact of 
disruptions. We can also account for the incentives of strategic decision-makers and interdependencies that 
impact the performance of control loops in networked systems. Specific recommendations include combining 
prediction methods in climate science and control-theoretic tools for climate change adaptation and mitigation; 
developing safe and secure technologies for automating and monitoring critical supply chains; leveraging 
advances in IoT, AI, and cloud computing to increase efficiency and agility of various industry sectors; and 
improving resilience to both random and adversarial disruptions by developing risk management tools that 
combine both technological defenses and institutional/regulatory requirements.

2.E.1 Introduction

As governments, the private sector, and communities strive to recover in the aftermath of the COVID-19 
pandemic, we are reminded about the global risks that span the societal, economic, environmental, and 
technological dimensions of human civilization (see Figure 2.11 for examples of 30 global risks in five different 
categories). In the near term (two to three years), we expect to see uneven recovery trajectories in different 
sectors of the economy, as evidenced by fluctuating commodity prices, rising inflation, and changing debt 
levels. In the medium term (three to five years), this divergence is expected to coincide with extreme weather 
events, geopolitical tensions, and economic confrontations between trading nations. However, in the medium-
to-long run (five to 10 years), the most significant risks are perceived to be environmental risks such as climate 
action failure, extreme weather, biodiversity loss, and natural resource crises and societal risks such as 
social cohesion erosion, involuntary migration, and livelihood crises. Additionally, technological risks such as 

2.E Resilience of Societal-Scale Systems
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In this section, we explain how the control systems community is poised to play a key role in building 
resilience into societal-scale systems. We can contribute to this mission by developing monitoring 
and decision-making tools for better planning, management, and control of critical infrastructures, 
and facilitating coordination between various entities that can benefit from these tools.
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cybersecurity failures and inequalities created by digitalization can be potentially significant.

On the one hand, the consequences of the pandemic have complicated the coordination needed to tackle 
long-term challenges such as climate action, digital safety, and resilience of critical systems. On the other hand, 
varied responses to public health crises have revealed several valuable insights on the resiliency-improving 
factors for managing such risks. Risk management should begin with governments balancing the key trade-
offs (e.g., public health versus economy), demonstrating preparedness and responsiveness by making data-
informed decisions, and facilitating effective communication between public and private sectors. Then, the 
private sector should contribute significantly to effective and timely responses at multiple levels (both local and 
national). This can be done by enhancing supply chain resilience, reconfiguring manufacturing to meet critical 
needs, and implementing a responsible code of conduct within industry. Communities would then play a key 
role by helping local governments at the grassroots level, raising awareness of systemic vulnerabilities, and 
encouraging the public to contribute to building resilience.

In this chapter, we explain how the control systems community is poised to play a key role in addressing 
global risks. These include developing resiliency-improving technological solutions for better planning and 
operational management of critical systems and facilitating the coordination and data-sharing arrangements 
needed to implement new policies and regulations. 

In the last decade, control systems scientists and engineers have led significant efforts in designing and 
operating societal-scale CPHS. This has benefited the emerging service models and created new business 
opportunities in several areas, including data access and analytics, energy management (e.g., building 
systems control, demand response), automotive safety, metropolitan traffic management, environment and 
infrastructure monitoring, renewable energy integration, and resilient operation of power grids. However, 
the overarching goals of ubiquitous connectivity, scalability, reliability, security, adaptability, and flexibility of 
operation remain hard to achieve from a whole-of-society viewpoint. 

To address these challenges, control systems modeling and analysis methods need to be grounded in 
quantifying the key service requirements. Our methodology for building and designing control must explicitly 
recognize the systematic vulnerabilities that our societal-scale networks face and effectively leverage emerging 
regulatory levers and principled data-sharing and analytics principles.

An important cross-cutting challenge is that traditionally, control system design has been considered largely 
disjointed from the economic incentives of strategic entities such as systems operators, managers, and 
users. In the context of legacy systems, control engineers have benefited from well-defined ownership 
structures and at best had a limited interface with regulators and policymakers. However, this loose coupling 
of control and incentive schemes cannot be sustained under the prevailing trends of digitalization, data-
driven analytics, and human-machine interactions. Significantly, new control applications will require 
faster operational time scales, greater spatial interconnectedness (often crossing multiple borders and 
jurisdictions), many mixed initiative interactions, and heterogeneous components. It is likely that, without 
tight coupling of control and incentives, our critical systems will continue to face conflicts between key 
operational metrics such as performance efficiency versus robustness and faults versus intrusions. They 
will also face persistent misalignment between individually and socially optimal strategies. It is important to 
understand how strategic decision-makers’ incentives and mechanisms influence the shaping of incentives 
that account for guarantees (limitations) of control loops and underlying network interdependencies. We 
believe that advancement in this area will contribute significantly to limiting societal losses in the face of 
global risks.
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2.E.2 Challenges and Opportunities

We now discuss key challenges and opportunities for the control systems community. Focusing on four 
representative domains and associated risks, we discuss the following questions: How can control systems 
technology contribute to mitigating and adapting to major global risks? What specific modeling, analysis, 
and design advancements are needed? What targets should be set over a 5- to 10-year horizon? When 
appropriate, we also raise the question: Do control systems technology’s current/ongoing deployments have 
unintended consequences that exacerbate these risks?

Infrastructure Failures Due to Climate Change and Extreme Events

Extreme events such as temperature fluctuations, hurricanes and tropical storms, and coastal flooding are 
increasingly threatening critical infrastructures such as energy and transportation systems. Due to global 
climate change, their destructive potential is expected to increase further in the coming decades (see Figure 
2.12 for an example of synergistic risks that can lead to a global systemic crisis). For example, the risk of 
critical infrastructure damage due to hurricanes became evident when many energy utilities struggled to 
handle the aftermath of the 2017 hurricanes Harvey, Irma, and Maria. Although infrastructure systems are 
inherently sensitive to weather and climate variability, we currently have a very limited understanding of the 
climate risks faced by these critical systems. We need foundational modeling and control design tools to better 
plan, monitor, respond, and adapt to these risks.

It is especially important to understand the impact of multidecade climate variability on complex interdependent 
infrastructure systems. Integrating renewable energy and distributed energy resources (DERs) are increasing 
the supply-side variability in energy systems. The composition of energy sources is expected to change further 
as governments and industry chase ambitious decarbonization targets, even as the current transmission and 
distribution infrastructure remains overstressed (and often ill-managed). In addition, sustained deployment 
of new electromobility and low-carbon alternative fuels (e.g., biodiesel, hydrogen, non-fossil natural gas) 
is expected to increase the interdependence among energy, transportation, and manufacturing systems. 
Anthropogenic activities are also expected to change the distribution and variability of meteorological variables 
that directly impact both energy demand and supply. The spatiotemporal variability resulting from these trends 
is expected to evolve over seasons and decades, resulting in new tradeoffs for energy system planning and 
operations.

The control systems community can lead cross-disciplinary efforts in the climate-infrastructure nexus by 
combining advanced prediction methods developed by meteorologists and climate scientists with control-
theoretic tools for decision-making under uncertainty. Such efforts can be built on the experience in designing 
operations of complex networks such as the electricity grid and help advance the integration of weather 
and climate data for assessing and managing climate risks. It is noted that the traditional approach to risk 
assessment only considers a relatively small set of (average) weather data. This limits our ability to develop 
risk-aware, long-term infrastructure renewal planning (e.g., transmission expansion and generation capacity 
expansion) and operational strategy (e.g., unit commitment and economic dispatch models). We need a system-
theoretic foundation for infrastructure-climate risk assessment and management grounded in modeling and 
decision-making in the face of uncertainties.
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The above goal can be addressed by developing a data-driven approach to evaluate weather-induced damage in 
large-scale networks, designing both pre-event resource allocation and post-event response/control strategies 
for rapid recovery. In particular, control-theoretic tools can be used to estimate spatiotemporal variability of 
extreme event forcings and predict their impact on infrastructures. We must also use heterogeneous, multimodal 
data to detect and identify failure events and active response via control tools. This would entail advancing 
modeling and computational tools for optimal resource allocation and response operations and developing 
systematic tools for resource allocation, network hardening, microgrid operation, and rapid recovery.

More work is also needed to systematically add high-dimensional time series data from climate models and 
simulations into coupled infrastructure-climate system dynamics and provide reasonable uncertainty bounds 
on key outputs and risk indicators. Furthermore, we need to develop useful tools for decision-makers that 
account for the probabilistic nature of climate risks and how they impact the various stakeholders (generators, 
transmission operators, utilities, and customers). This entails using ideas from stochastic modeling, dynamic 
optimization, and network control to limit the impact of climate risks on infrastructure systems. Finally, we need 
to recognize different ownership structures and strategic interactions between the government and private-
sector entities that govern data sharing across sectors/organizations and the individual incentives needed to 
implement resiliency-improving actions.

Security Threats to Global Networks

Cyberattacks are consistently ranked among the top long-term global risks. They are of particular concern to 
the control systems community because of the digitalization and deployment of embedded IoT and computing 
devices in our power grid, vehicles, medical devices, buildings, and many other systems that we routinely 
interact with. It is well-recognized that such CPS have an enormous positive impact: they improve safety, 
efficiency, and adaptability and enhance the reliability, usability, and autonomy of emerging service models.

Quantifying and managing risks to CPHS remains a unique challenge, especially in the care of correlated 
failures caused by simultaneous attacks (security failures) and simultaneous faults (reliability failures). Due 
to tight cyber-physical interactions and interactions with multiple decision-makers, it is extremely difficult or 
at least prohibitively time-consuming to isolate the cause of any specific failure using available diagnostic 
information which, in general, is imperfect and incomplete. Essentially, security and reliability failures in 
CPHS are inherently intertwined. The control systems community is well-positioned to leverage technological 
defenses and institutional means to limit the risks due to interdependent reliability and security failures.

The technological means to reduce security and reliability risks include IT security tools like authentication 
and access control mechanisms, network intrusion detection systems, patch management, and security 
certification. It also includes control-theoretic tools like model-based and data-driven detection and isolation, 
robust control strategies that maintain closed-loop stability and performance guarantees under a class of 
attacks, and reconfigurable control strategies to limit the effect of correlated failures. The control community has 
recognized that the effectiveness of security tools may be limited by speed, cost, and usability considerations. 
For example, the frequency of security patch updates is limited by real-time constraints, and common criteria 
certification is limited by the resources for security. Control researchers have worked with government and 
industry organizations to develop security standards and recommendations that combine IT-specific security 
defenses with control-theoretic tools.
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A significant challenge for implementing a security and reliability risk assessment framework is developing 
data-driven, stochastic CPHS models, which account for dynamics under interdependent reliability and 
security failures. Here the key challenge is to extend the basic models that focus on dynamics under a specific 
scenario to a composite model that captures various correlated failure scenarios, including simultaneous 
attacks, common-mode failures, and cascading failures. In principle, techniques from statistical estimation, 
model-based diagnosis, stochastic simulation, and predictive control can be used to generate new failure 
scenarios from real-time data, synthesize operational security strategies, and provide estimates of residual 
risks in environments with highly correlated failures and less-than-perfect information.

It is important to note that technology-based defenses alone are insufficient to ensure resilience to correlated 
failures. In particular, the lack of private parties’ incentives for security improvements severely impedes achieving 
socially desirable improvements of CPHS security. This problem is compounded by information deficiencies 
arising from the conflicting interests of individual players, whose choices affect CPHS risks. In environments 
with incomplete and asymmetric information, the societal costs of a correlated failure typically exceed the 
losses of the individual players whose products and services affect systems operations and on whose actions 
the risks depend. The individual players are then likely to underinvest in security relative to a socially optimal 
benchmark, requiring the design of institutional means to realign the individual incentives to make adequate 
investments. Still, our limits to accessing risks of statistically rare events such as extremely correlated failures 
mean that our critical societal infrastructures face residual risks even under best technological defenses 
and institutional structures. The control system community will need to design and operate systems in the 
face of these residual risks. This is apparent from the emergence of organized cybercrime groups capable of 
conducting intrusions into critical control systems and cyber warfare actively employed by nations engaged 
in armed conflict.

Supply Chain Disruptions

Today’s supply chains are complex, interconnected, and global networks. They include producers, 
transportation and logistics companies, and entities for the storage, assembly, and distribution of a large 
number of products and differentiated services. In recent years, supply chains have become globalized. This 
has improved productivity and income levels in producer countries (in particular, low-income countries). The 
ongoing digital transformation of supply chains has contributed significantly to increased levels of automation, 
cost control, and service quality. It has also increased the efficiency and timeliness of transactions while 
shifting the role of humans in manufacturing plants, warehouses, and logistics operations.

However, it is also clear that many supply chains have become more vulnerable to disruptions. The global 
pandemic has revealed issues such as recurring shortages of critical parts and raw materials (e.g., semiconductor 
chip shortages impacting manufacturing in many sectors) and rapidly evolving consumer buying patterns. 

It is important to note that the movement toward fragile structures has been in the making for several decades. 
For example, many firms reduced capacity buffers and experienced personnel to meet consumer expectations 
of low prices. To cut costs and gain a competitive edge in tough markets, we have seen significant levels of 
outsourcing and offshoring. This has significantly increased reliance on developing economies, with China 
emerging as a major manufacturing hub. These are only some of the reasons behind well-known disruptions 
such as the 2011 Tsunami in Japan, the 2008 financial crisis, and the 2003 SARS epidemic.
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The control systems community is well-positioned to improve the resilience of global supply chains in response 
to events such as natural disasters and weather emergencies (which are expected to rise with climate change), 
cyberattacks, labor shortages/strikes, and financial crises. Here are some of the opportunities:

End-to-End Visibility In Diverse Supply Chain Networks: Control engineers have already contributed to the 
deployment of IoT, robotics, and automation in various production and logistics processes. By building on 
the experience in designing large-scale monitoring systems, our community can provide solutions to ensure 
end-to-end visibility in diverse supply chain networks ranging from vertically integrated industries to ones with 
varying levels of offshoring, outsourcing, and collaborative relationships. The challenge here is whether we can 
design monitoring systems that provide fine-grained alerts about issues such as unforeseen delays or quality 
noncompliance.

Identify Disturbance Propagation and Weak Links: Control systems thinking can also provide new insights 
into how disturbances propagate in these complex networks and help stakeholders identify weak links in a 
timely manner. This is especially important given that both the magnitude and frequency of climate-related 
events continue to rise, and many of these events are causing supply-chain shocks. A significant step would 
be to leverage improved visibility of supply chain structures to identify if suppliers can meet the demand for 
their current production plans and inventory levels. For example, work by David Simchi-Levi has shown that 
metrics such as “time-to-survive” and “time-to-recover” can be very useful in evaluating resilience.

Building Redundancy Measures: Tools from the control of distributed systems, stochastic optimization, and 
recent developments in learning for control can provide useful insights on where and how to build redundancy 
measures like backup capacity and strategic holding of additional inventory. It is important to note that building 
redundancy is costly in general, but it may provide a competitive advantage and increase profits during 
periods of supply chain stress. The control systems community has long-standing experience designing and 
implementing redundancy measures in the power grid. There are interesting parallels and lessons to be learned 
that can be applied to supply chains.

Improve Supply Chain Agility: Maintaining agility in supply chains will enable them to respond quickly and 
substitute between inputs to respond to disruptions. Firms can improve agility in various ways including 
identifying bottlenecks and resolving them promptly, investing in flexible production processes and general-
purpose manufacturing lines and maintaining long-term collaborative relationships with suppliers. All these 
solutions require decision-making under uncertainty and the ability to quantify key underlying tradeoffs.

Engage With the Government and Public Sector: The control systems community can potentially engage 
in the conversation around the role of the government and public sector in promoting resilience. Importantly, 
the public sector plays a crucial role in maintaining investment levels in sectors including energy production, 
climate security, and transportation of people, critical raw material, and supplies at national and international 
scale. During the COVID-19 pandemic, the diversity of government responses worldwide in aggregating and 
disseminating information and ensuring supplies of critical commodities underscored the importance of timely 
and coordinated interventions. Similar opportunities lie in providing crucial aggregate information to help 
effective planning and coordination between various entities running global supply chains.
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2.E.3 Recommendations

Network analysis – structure and dynamics in the face of risks

• Model the dynamic propagation of disturbances in cyber-physical networks and use of multimodal 
data to learn network structure and dynamics (near-term)

• Develop quantitative methods for risk assessment, quantify risk metrics, and exploit data as well 
as models. Develop general methodology and infrastructure-specific analysis that accounts for 
common-mode failures and interactions between infrastructures (near-term)

• Learn about rare events, their risks, and ways to model and block cascading risks and failures 
(medium-term)

• Minimize risks to network structure design subject to budget, incentive, and infrastructure interaction 
constraints. This may involve the allocation of new devices and services and partial infrastructure 
upgrades (medium-term)

• Develop resilient control through coordination between multiple interacting subsystems potentially 
operated by decision-makers that have their own objectives and imperfect information (medium-term)

• Advance technology to improve the trustworthiness of critical supply chains, including integrity, 
traceability, and resilience to disruptions (medium-term)

• Develop foundational theory to integrate methods in analysis of large-scale complex networks with 
methods in strategic planning and operational response design in the face of global risks (long-term)

• Develop foundational knowledge of computational methods that address the interaction of global 
supply chains (including the energy system) with changing weather and climate extremes (long-term)

Understanding ownership structures and shaping incentives in networks

• Make connections between distributed control and dynamic mechanism design (near-term)

• Understand how to jointly design incentives and control to take advantage of opportunity at the 
intersection of game-theoretic modeling and learning in control with applications of networks (e.g., 
strategic network formation, learning and adaptation in networks with uncertain parameters, and 
network interdependencies) (near- to mid-term)

• Account for differences in regulatory regimes and drive them in a manner which facilitates the scale 
and robustness of deployed technology (mid-term)

• Learn how to build a network and control loops to mitigate unintended consequences. (mid-term)

• Understand how to control only some components of the network and how to integrate different 
components (mid-term)

• Define interfaces between components and understand what kind of regulation is needed for a 
trustworthy design (mid-term)

• Analyze security IT and control-theoretic defenses and policy mechanisms for risk management in 
CPHS under alternative informational and incentive structures (long-term)

• Establish formal channels of interaction between entities responsible for operating and managing 
critical systems, even when they are located in different jurisdictions to coordinate effective 
responses to disruptive events (long-term)



56

• Understand how institutions can enable new business cases for resilience and new ways of risk-
sharing, like maintaining minimum levels of legal liability of secure CPHS, and incentivize vulnerability-
finding, incident disclosure, and insurance instruments to improve information about risks (long-term)

Monitoring, early assessment of disruptions, and quantifying predictions

• Learn latent network state and rapidly identify correlated events based on heterogeneous data  
(near-term)

• Undertake data-driven approaches to leverage and create new datasets and intersections with 
model-driven frameworks (near-term) 

• Understand the actuator, where control comes in, and opportunities for behavioral model analysis 
(near-term) 

• Predict massive disruptions in global networks/supply chains and understand the limitations and 
impossibilities of those predictions. Leverage statistical machine learning and a mixture of worst-case 
deterministic modeling and detection of onset and failure-triggering events (medium-term)

• Successfully deploy computational tools for analytics-driven diagnostic models from heterogeneous 
multisource data on disruptions (medium-term)

• Understand ownership structures of data needed for diagnostics and sharing arrangements needed 
for ensuring the trustworthiness of data used for generating alerts (medium-term)

• Explore digital commodities, the flow of information and goods, security monitoring of computing and 
communication requirements, cooperation between unmanned aerial vehicle (UAV) fleets, and the 
risks of relying on cloud services hosted in a single country (medium-term)

• Integrate diagnostic tools that leverage data on past network disruptions and early warning indicators 
with the design of optimal resource allocation and network control strategies (long-term)

• Actively learn before and during disruptive events and accurately predict their impact on critical 
networks and services (long-term)

Illegal, criminal, adversarial actions on the networks

• Build on significant work in cyber secure and resilient control, and expand scope to interdependent 
systems (near-term)

• Use security allocation (game-theoretic) to disrupt illegal activities (near-term)

• Design honeypots in CPHS (near-term)

• Include critical supply chains to improve trustworthiness (medium-term)

• Disrupt illegal supply chains (human trafficking, natural resources, rare minerals, etc.) and understand 
the role of monitoring and inspection technology and supply chain network controls to eliminate 
illegal flows (medium-term)

• Apply foundational knowledge and tools to understand the role of humans in initiating illegal, criminal, 
and adversarial behaviors in CPHS (long-term)
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• Evaluate the role of AI/ML techniques in creating new attack vectors and how regulatory and 
incentive frameworks can be created to limit their effectiveness. In addition, leverage national policies 
and international commitments on responsible use of digital technologies deployed in critical systems 
(long-term)

• Understand to what extent control systems designers and operators need to be trained to recognize 
such behaviors (long-term)

Reconfiguration and adaptation to build-in resilience

• Determine where to put buffers back into the system and memory, who pays and what the price is, 
and how to localize failures (e.g., If one bank goes bankrupt, the rest of the world does not follow) 
(near-term)

• Think about the tradeoff between efficiency and resilience: Is there a Pareto curve? Should providers, 
consumers, or governments pay for resilience? (near-term)

• Understand how recent examples impacted manufacturing and supply chains. For example, how 
the global chip shortage affected new and used car markets, how these markets adapted, and how 
demand shifted (near-term)

• Consider buffers or reconfiguration and the incentive for private businesses to have buffers. When 
a company provides buffers, lean or just-in-time (JIT) companies must pay a lot when a disruption 
occurs (medium-term)

• Define issues around adapting manufacturing and logistics to implement reuse and recycling (circular 
economy), such as tools, disposal costs and institutional structures, and incentives for manufacturers 
to send safe and secure products to market or recall/fix them when needed (medium-term)

• Evaluate and plan a global response to cyber conflicts involving nation-states, including situations 
in which cyber capabilities are deployed as a means of subversion and which create humanitarian 
distress (long-term)

• Understand why scale is a challenge. Determine how engineered systems like the power grid (e.g., 
deployment of storage in a renewable-heavy grid and decarbonization strategies in multi-vector 
energy systems planning) and be used in mechanism/incentive design and regulation to achieve scale 
(long-term)

• Orient control technology to create a business case for risk management (long-term)

• Understand when to convene a temporary strategic shortening of the global economy or wait for a 
crash (long-term)
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Recommendations

For young researchers: To build resiliency in the next-generation societal infrastructure, we need 
foundational tools to understand network dynamics under disruptions and detect/identify failures; 
design control and incentive mechanisms that improve closed-loop performance in strategic 
environments; and implement optimal resource allocation and dynamic response strategies.

For funding agencies: Areas that are nascent or require more exploration include comprehensive 
and contextual design approaches to ensure the safety, trust, and security of critical systems in the 
face of emerging risks (specifically, technological, environmental, and societal risks) and robust, data-
driven mechanisms to maintain functionality in a wide range of disruptions to networked systems.

Figure 2.11: Mean ranked likelihood and impact of global risks, plus robustness of the knowledge base 
surrounding each risk (size of the circle), for the 30 global risks in 5 categories (risk types). Citation: Future 
Earth, 2020. Risks Perceptions Report 2020: First Edition. Future Earth [82] (reprinted with permission).
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Appendices
 
A Pandemics: Modeling and Control

Sarah Fay, Anette Hosoi, Dalton Jones

Many traditional epidemiological modeling approaches incorporate detailed descriptions of disease 
transmission and individual behavior [84, 85, 86, 87]. These models may be fitted to collected data and can 
be simulated to assess the viability of a range of control strategies. However, the complexity of these models 
precludes testing all but a small subset of potential interventions [88]. In particular, obtaining a closed-form 
control law associated with a complex simulation is difficult unless the dynamics can be simplified. 

Simpler models allow scientists and leaders to design policies that are rigorous from a control theory 
perspective (in the sense that it is robust to variations in the model and from external disturbances) and is also 
more easily understood by policymakers and other nonexperts. The current emphasis on complex simulations 
and models may hinder the development of simple yet effective control laws. Simplicity is key to effective 
mitigation because the policies designed using these control-theoretic methods will necessarily require the 
participation of individuals. 

To be practically implemented, policy decisions derived from a systems theory perspective must emphasize 
interpretability and simplicity. Individuals who must be relied upon to enact such policies modify their behavior 
only when it is in their self-interest. Making it clear why a particular control law exists makes it more likely that 
individuals will recognize that acting as per the recommendations leads to optimal personal outcomes.

In the case of the SARS-CoV-2 pandemic, a study from Imperial College London noted that the uncertainties 
around how the disease was transmitted led to uncertainty regarding policy effectiveness. This limited the extent 
to which the population adhered to policies that mitigated the risk of spreading the disease [89]. Throughout 
history, there are numerous examples of governments that refused to disseminate accurate information that 
led to unnecessarily risky behavior among the populace. From the U.S. government’s failure to act or even 
publicize the extent of the AIDS problem in the 1980s to the scapegoating of Jews in the Middle Ages for the 
spread of the plague, disinformation is an insidious and misunderstood aspect of infectious disease in society. 
Similarly to the COVID-19 pandemic, the relationship between uncertainty and unwillingness to adopt socially 
responsible behavior was illustrated during the 1918 Spanish flu pandemic. The American government’s 
failure to report the seriousness of the disease led to uncertainty surrounding its virulence and a piecemeal, 
disorganized response [90]. In essence, control policies developed to mitigate the spread of disease are only 
effective when a baseline level of trust depends on the quality of information available. It is an open question of 
how researchers can understand the notion of trust and try to build it for more effective policy implementation.

Early in the SARS-CoV-2 pandemic, random testing and quarantine of positive individuals were recognized as 
simple, relatively unobtrusive ways to limit the spread of the disease with minimal disruption to society. While 
existing network-based models can be used along with Monte Carlo simulation to estimate the effectiveness 
of specific testing strategies [88, 91], these models do not produce a straightforward answer to the question, 
“How much testing is necessary to stop the spread of the disease?” On the other hand, the authors in  
[92] used a simplified branching process model to model the spread of a disease so a closed-form solution 
could calculate sufficient levels of testing for disease mitigation.
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The details of the aforementioned paper [92] can be summarized as follows: Using a branching model of 
disease transmission, one may derive a formula for the effective reproductive number of the disease Reff  
(the expected number of new infections originating from a single infection over the course of the sickness) that 
incorporates the level of testing, as 

The details of the aforementioned paper [90] can be summarized as follows: Using a branching
model of disease transmission, one may derive a formula for the effective reproductive number of
the disease Reff (the expected number of new infections originating from a single infection over the
course of the sickness) that incorporates the level of testing. This formula expresses the essential
relationship between testing and the rate of spread of a disease, showing that as long as levels of
random testing exceed a certain bound,

ftest ≥
R0 − 1

d− 1
,

the number of infections must decrease over time (where ftest is the fraction of randomly tested
individuals, R0 is the measured rate of spread of the disease, and d is the average duration of the
infection). This expression demonstrates the power of simple modeling and control.

Simplicity, in this case, means that the policy requires estimating and manipulating a single
parameter, the effective reproduction number Reff . The relationships between the measured rate of
spread and the required testing rate are clear (one increases with the other), and policymakers and
non-experts can quickly understand the necessity for testing and be more likely to participate.

On a practical level, the policy also remains consistent so that, instead of quickly changing
requirements leading to precaution fatigue, there exists a simple set of guidelines that depend only
on the measured value of the reproduction number R0. Additionally, the policy can easily adapt
if a change is detected in the virulence of a disease (as happened with the delta variant of SARS-
CoV-2). Interestingly, the modeling techniques used for these results stray from the goals of many
other epidemiological methods in that, instead of trying to predict the trajectory of the disease,
only stability, in the sense that the number of infections inevitably decays, was considered. This
suggests that a systems perspective can help control, if not necessarily perfectly predict, the course
of an epidemic.

Practical guidance produced using these methods is the foundation of the testing policy recom-
mended by the CDC for organizations [91]. These policies were implemented at the Massachusetts
Institute of Technology, which gradually resumed normal functioning over the last year without
any outbreaks. While this preliminary work shows promise in developing effective methodologies
to mitigate the spread of infectious diseases, many new decision and control problems have arisen
during the pandemic.

The successes of the research applying systems theory to epidemiology [90] illustrate exciting
opportunities to apply the formalism of our field to large-scale societal problems. In particular, the
areas of opportunity for the application of decision and control in epidemiology include:

Interactions between social and physical systems In understanding the dynamics of processes
like epidemics and designing control laws to steer such dynamics, we need to know how physical
processes (like disease transmission) depend on human behavior (like going to a restaurant) and
vice versa. Additionally, it is clear that to affect a policy, one must change an individual’s actions,
and as such, we must ask how best to influence behavior, whether through direct mandates and
control or other incentives or mechanisms.

The application of control theory to slow the spread of disease lies in a broad class of problems
at the intersection of systems theory and the social sciences. In particular, to control an epidemic’s
trajectory, instead of applying a force to a mechanical or electrical system, the engineer must rely
on individuals behaviors to actuate control strategies. In this way, applying control to epidemio-
logical problems is one example of a collection problem that seeks to understand the dynamics of
systems driven by physical processes (like disease transmission) and human behavior. The structure
in which these two processes interact may be described using a network or other spatiotemporal
representations. Such representations act as an estuary between physical systems and social sys-
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This formula expresses the essential relationship between testing and the rate of spread of a disease, showing 
that as long as levels of random testing exceed a certain bound, the number of infections must decrease over 
time (where ƒtest is the fraction of randomly tested individuals, R₀ is the measured rate of spread of the disease, 
and d is the average duration of the infection). This expression demonstrates the power of simple modeling 
and control. 

Simplicity, in this case, means that the policy requires estimating and manipulating a single parameter, the 
effective reproduction number Reff. The relationships between the measured rate of spread and the required 
testing rate are clear (one increases with the other), and policymakers and nonexperts can quickly understand 
the necessity for testing and be more likely to participate. 

On a practical level, the policy also remains consistent so that, instead of quickly changing requirements 
leading to precaution fatigue, there exists a simple set of guidelines that depend only on the measured value 
of the reproduction number R₀. Additionally, the policy can easily adapt if a change is detected in the virulence 
of a disease (as happened with the delta variant of SARS-CoV-2). Interestingly, the modeling techniques used 
for these results stray from the goals of many other epidemiological methods in that, instead of trying to predict 
the trajectory of the disease, only stability, in the sense that the number of infections inevitably decays, was 
considered. This suggests that a systems perspective can help control, if not necessarily perfectly predict, the 
course of an epidemic.

Practical guidance produced using these methods is the foundation of the testing policy recommended by 
the Centers for Disease Control and Prevention (CDC) for organizations [93]. These policies were implemented 
at the Massachusetts Institute of Technology, which gradually resumed normal functioning over 2022 without 
any outbreaks. While this preliminary work shows promise in developing effective methodologies to mitigate 
the spread of infectious diseases, many new decision and control problems have arisen during the pandemic.

The successes of the research applying systems theory to epidemiology [92] illustrate exciting opportunities to 
apply the formalism of our field to large-scale societal problems. In particular, the areas of opportunity for the 
application of decision and control in epidemiology include:

Interactions Between Social and Physical Systems: In understanding the dynamics of processes like 
epidemics and designing control laws to steer such dynamics, we need to know how physical processes (like 
disease transmission) depend on human behavior (like going to a restaurant) and vice versa. Additionally, it is 
clear that to affect a policy, one must change an individual’s actions, and as such, we must ask how best to 
influence behavior, whether through direct mandates and control or other incentives or mechanisms.

The application of control theory to slow the spread of disease lies in a broad class of problems at the intersection 
of systems theory and the social sciences. In particular, to control an epidemic’s trajectory, instead of applying 
a force to a mechanical or electrical system, the engineer must rely on individuals behaviors to actuate control 
strategies. In this way, applying control to epidemiological problems is one example of a collection problem 
that seeks to understand the dynamics of systems driven by physical processes (like disease transmission) 
and human behavior. The structure in which these two processes interact may be described using a network 
or other spatiotemporal representations. Such representations act as an estuary between physical systems 
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and social systems. A fundamental understanding of these interactions is crucial to effective control design in 
this class of problems.

Understanding and refining theories in the social sciences can help predict and take advantage of how people 
process and respond to information and incentives. Researchers are just beginning to understand how 
disseminated information can change individual behavior. Recent research [94] has shown that data on local 
infection rates has a self-regulating effect as people in places with high infection rates modify their behavior to 
reduce their risk. Therefore, the proper release of information to the public can serve as a signal for individuals 
to behave more safely. Similar ideas exist in game theory (such as the coarse correlated equilibrium), and these 
tools may be important in understanding how information can lead to action in a social system.

On the other hand, irregular dissemination of untrustworthy information can limit the extent to which a population 
adopts preventive behaviors. This is demonstrated by the continued erratic behavior of a large proportion of 
the American public during the pandemic. At a fundamental level, knowing what information to release and 
when requires understanding how individuals make decisions that they perceive to be good for them. This 
requires tools traditionally in the domain of economics and psychology. Effective models in this new domain of 
humans-in-the-loop control must partition inputs into those that can be directly specified (such as government 
mandates) and those which require indirect incentivization to shape human behavior. Such interplay between 
direct and indirect application of control is another novel avenue of research for future consideration.

Understanding Network Effects: Designing control systems in situations in which physical dynamics and 
social dynamics play a role require a thorough understanding of both types of systems. For social dynamics, 
many processes are driven through some underlying network. Networks also serve as a contact point where 
physical processes and social dynamics mix. For example, a social network for COVID-19 could be created 
by connecting any individuals who spent time in close proximity (which is the only way the disease could be 
spread.) In this way, the network is a product of the interaction of social processes and disease dynamics. 
Understanding the network sheds light on both of these aspects driving epidemiological problems. For 
example, the structure of the network may suggest something about transmission. If the degree distribution 
follows a power law, where many connections originate from highly central individuals, it may be that the bulk 
of transmission comes from “super-spreading” events. This information may be critical to implement policies 
limiting the spread of a certain disease. However, it should be noted that in certain general situations, as 
studied in [92], exact knowledge of the network is unnecessary to implement sufficient policies that stop the 
spread of disease. It remains an interesting question when network effects matter and when they do not.

Understanding the interplay between networks and dynamics is critical in effective controller design. 
Furthermore, the fidelity with which networks and interactions are modeled must be addressed. In the case of 
epidemiology, models range from very coarse population-level susceptible-infectious-recovered (SIR) models 
built upon a simple set of coupled differential equations to highly complex individual-based models that track 
the progression of a disease as it spreads through a simulated society. The scale at which these dynamics 
are studied depends on the data available to support the model and the scale at which control actions are 
implemented. For example, if we only have population-level infection data, it would be difficult to assert that 
disease transmits through one network or another. Additionally, if control is implemented on a weekly timescale, 
it is likely unnecessary to model disease progression hourly. Finally, to obtain tractable control solutions, 
simple, accurate models must be obtained that capture the essence of the underlying disease dynamics.

In the case of epidemics, [92] showed that for control, the full network structure need not be known to predict 
the asymptotic behavior of the system. However, the network impacts other aspects of a disease’s progression. 
In particular, it can be seen in Figure 2.13 that different network structures result in different peak infection rates 
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at different times when no control is applied, even when the reproduction rate R₀ remains the same across 
simulations.

Learning for Control: One of the difficult aspects of applying control theory to epidemiology is being able to 
quickly recognize the dynamics of the disease. Given the exponential nature of early spread, this recognition 
must lead to the rapid application of disease-slowing interventions before an epidemic gets out of control. 
However, as previously discussed, modeling disease dynamics is a complex problem. 

The issue for control theorists is to simultaneously learn models with sometimes very limited noisy data 
and to design algorithms using those models to derive policies meant to slow the spread of disease. These 
algorithms ideally should adjust to changing parameters over time. One example is the work [92] in which a 
single parameter R₀ was estimated. This parameter was then used to derive the necessary amount of testing 
needed to drive the number of infections to zero over time. This algorithm additionally displayed a desired 
responsiveness to changing model parameters in the sense that, as the SARS-CoV-2 virus mutated, it became 
more infectious. As a result, the methodology recommended a higher level of testing in order to control its 
spread. These results are shown in Table 2.1 in which the testing required to stop the spread of various 
diseases is given in terms of their reproduction numbers.

Of course, our domain-specific knowledge in public health allows us to quickly implement policies limiting 
common pathways through which diseases spread (either from person to person or from some other common 
source). For example, social distancing and masks will slow the spread of the majority of human-borne 
infectious diseases like influenza, SARS-CoV-2, or the measles. Therefore, this prior knowledge can be used 
to immediately blunt the spread of a newly detected disease. The challenge then becomes how to learn and 
apply control quickly, leveraging previous knowledge in a provable, robust way.

Figure 2.13: Sample realizations of four different network structures and their resulting degree distributions. 
Intervention-free infection was simulated on each network to make a measurement of R₀. The required testing 
to stabilize the system, ƒT,min,₀, was determined and another infection simulation was implemented with ƒT = 
ƒT,min,₀ +δ, where ƒT,min represents the minimum percentage of the population randomly tested at each time 
step required to move R₀ below 1. Both infection progressions are shown: intervention-free (red) and with 
stabilizing testing (blue). The two rightmost plots in each subplot show a histogram of measured degrees, 
giving an empirical estimate of the degree distribution, and the last shows the progression of the disease 
through percentages of a population (with a maximum of 1). All of the infection progression graphs are plotted 
on the same axes.
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There are also several other nuances in learning that should be noted. In the case of SARS-CoV-2, uncertainty 
due to limited data regarding the dynamics of disease transmission and danger led to a delayed and inadequate 
response. Effective control must act quickly based on little information. A theoretical understanding of how 
quickly good control methods can be enacted in the case of limited historical system measurements must 
be developed. As different methodologies and interventions are enacted, it is crucial to establish the causal 
effects of system inputs to better refine future interventions. Data collected in 2020 indicated that the greatest 
changes in personal mobility (a proxy for the level of lockdown enacted) occurred in locations where the 
greatest number of deaths occurred. While the lockdown occurred before the deaths began to rise, this does 
not mean that the level of lockdown led to greater death rates. Instead, it showed that locations with higher 
infection rates had stricter lockdowns. A more thorough analysis would also consider the lag in the progression 
of the disease from infection to death. Untangling the web of causality and correlation is important to quantify 
the effectiveness of different policies for use in controller design.

As an aside, confusing the causality regarding lockdowns and death rates is a good example of how wrong 
inferences can occur if data is not handled carefully. In this case, an unobserved latent state drives the 
dynamics (the true infection rate). Identifying the effects of these latent unobserved states from a set of sparse 
measurements (potentially taken from different but similar systems) is a challenge for system identification. In 
the case of COVID-19, given information about lockdown timing and severity along with infection rates and 
death rates across a number of cities will allow us to make better inferences (provided the data can be properly 
combined). Using a model-based approach, doing a counterfactual analysis is straightforward enough. Fit the 
model using the observed data, then alter the inputs to determine the outputs change. However, assuming a 
particular model structure introduces bias to the system, it is advantageous to do such counterfactual analysis 
in a data-driven, not model-driven, way.

Learning how intervention A leads to outcome B is critical in designing effective epidemiology policy. Usually, 
such mathematical questions fall under the umbrella of causal inference, a set of statistical techniques used to 
determine the actual effects of particular inputs to a system. Interestingly, this theory is not so well developed 
for dynamical systems and control. However, the extension of this theory to our field would allow researchers 
to answer many important questions. In the case of epidemiology, we need a way to describe a situation in 
which an intervention was applied differently. For example, we might want to know how the rate of infections in 
Denver would have differed if a lockdown was not implemented. It is not possible to learn this through a control 
group because it would be unethical to place the individuals in such a group in a potentially more dangerous 
situation. Therefore, can we infer a change in outcome based on different inputs using observed data? One 
way to do this is by using “synthetic controls” which can eliminate underlying confounders to determine the 
causal effects of treatments on outcomes using only observed data. The application of such techniques to 
control systems is in its infancy but could provide new ways to solve difficult problems in system identification.

Uncertainty Quantification: Is it possible to quantify the uncertainty in model estimation to account for 
unknowns as part of the controller-design process? Moreover, can we demonstrate that there exist control 
methodologies that work with some degree of success in the presence of uncertainty and improve as more 
data about the process is collected? Such an understanding will help us determine which granularity control 
should be implemented. For example, we have good data on how SARS-CoV-2 spreads on a weekly basis. 
Based on this, does it make sense to develop a control method that changes minute by minute? (Probably not.) 
More broadly, how do the type and quality of data collected inform possible controller strategies and design?
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Using Simulations to Design Policy: Can we use existing models and epidemic simulations to test our methods? 
In particular, can high-quality reinforcement learning methods be designed using complex simulations in the 
loop? Could such simulations be used with model reduction techniques to develop mathematical descriptions 
more appropriate for use in traditional controller-design algorithms? Of particular interest would be using existing 
simulations to learn simplified descriptions of the system, similar to the work done to understand complicated 
phenomena like turbulence [95].

In previous work, simulations have been used to motivate and corroborate the effectiveness of simpler models 
that were more tractable to use with control methods. In [92], a complex individual-based simulator was 
initially used to track the progression of several pandemic scenarios. Later, a branching model was used that 
upper-bounded the number of infections of the more complex simulator. The upshot of this was that any policy 
that controlled the upper-bounding branching model also necessarily controlled the epidemic in the simulator. 
This can be seen in Figure 2.14.

Figure 2.14: Number of infectious individuals at t = 5 for I₀ = 10 (dashed line) as a function of (a) the daily testing 
fraction and (b) the parameter λ, for various models of interactions in the population. The collapse in λ shown 
in (b) indicates that stability is independent of the variance and type of distribution of interactions. The shaded 
region represents where we expect to see stable dynamics, i.e., where the number of infectious individuals 
decreased from I₀. Each point represents the mean of 100 trials with the same parameters.

Equity in Decisions and Policy: How can we ensure that policies and decisions based on our methodologies 
treat individuals fairly and do not discriminate based on any underlying social condition (i.e., ethnicity, economic 
status, etc.)? Even better, how does one design control algorithms that promote social welfare?

Recent work [96] discussed the difficulty of balancing the economic impacts of COVID-era pandemic-easing 
policies like lockdowns on the upper and lower class. In particular, because lower income populations are more 
likely to live in larger family units (especially with older family members) and because their jobs entail a higher 
risk of contracting disease, the paper [96] argues that subsidies should be given to these at-risk groups to help 
them social distance and still pay their bills. Further research in this vein should consider ways to optimize the 
distribution of resources so that those without the means to sustain themselves during an emergency receive 
sufficient aid, while preventing wasteful allocation to those who do not need help.
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Understanding Tradeoffs: In the case of epidemics, the most effective nonpharmaceutical policies to steer 
the course of a disease through a population is to shut everything down. This is also the worst possible thing 
to do in terms of economics. Other interventions may positively impact the course of an epidemic but might 
have unintended secondary effects on mental health. 

When applying policies on a large scale, some unintended consequences naturally occur. In a sense, this 
phenomenon might be an extension of the waterbed effect from classical controls to social systems. It is 
important to quantify and respect such tradeoffs in tackling these problems as, in this case, totally neglecting 
economic or psychological well-being may potentially lead to worse outcomes than those that arise from the 
spread of disease.

Table 2.1: Levels of random testing required in the absence of a vaccine to control the spread of common 
diseases for two contact tracing scenarios. The rate of testing indicates the probability of an individual being 
tested on each day; 1 corresponds to daily testing for everyone. The required level of testing decreases 
as contact tracing increases (see fourth column where 50% of contacts are traced after a successful test). 
Estimates for COVID-19 are based on aggregate global data in early 2020 [87] and the delta variant in 2021 
[97].

(R0) (d) Fraction tested Fraction tested w/ contact tracing

COVID (Alpha) 3.5 [87] 14 [87] 0.23 0.2

COVID (Delta) 6 [97] 14 [97] 0.34 0.27

SARS 1.08 [98] 14 [98] 0.006 0.004

Flu 1.4 [99] 7 [99] 0.07 0.06

Measles 12.0 [100] 14 [100] 0.85 0.58
    

Future results in our field, when applied to systems that are intrinsically linked with society (such as energy 
generation and use or the economy), must take a holistic approach when considering which variables to control. 
Throughout the pandemic, public health and the economy seemed to be at odds as different pandemic-easing 
policies, such as lockdowns, placed stress on workers and businesses. As such, the aspiring societal control 
theorist must anticipate the consequences of different actions and incorporate robustness to minimize the 
effects of unexpected behaviors. While these methods are sometimes studied in the social sciences, finding 
ways to bridge the gap (particularly mathematically) between existing theory and the formalism of system 
theory is an important emerging problem.

Ultimately, systems and control theory is uniquely positioned to augment existing methodologies to model and 
control the course of epidemics. The problems discussed above also belong to an exciting area of research, 
coupling social behavior with the dynamics of complex systems. Solutions in any of these domains will naturally 
carry over to many interesting applications. The future of control theory is not to continue refining our analysis 
of essentially well-understood mechanistic systems but to begin applying proven and novel techniques in 
estimation and control to manipulate novel dynamics—in this case, the interplay between natural phenomena 
and society.
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B Neuroengineering

Tommaso Menara, Timothy O’Leary, Fabio Pasqualetti, Sri Sarma, Rodolphe Sepulchre

Brain-machine interaction is a major scientific and technological challenge and opportunity of the early 21st 
century. This is compellingly demonstrated by the BRAIN Initiative in the U.S. and the Human Brain Project 
in Europe. New imaging techniques have advanced our understanding of brain function by providing data 
at an unprecedented temporal and spatial resolution. Novel implant technologies have given us the ability 
to stimulate brain activity and offer new medical treatments for brain disorders such as depression and 
Parkinson’s disease. Brain-machine interfaces provide unprecedented ways to close the loop between biology 
and engineering and create new rehabilitation protocols for injuries of the spinal cord or the nervous system. 
Every development in neuroscience inspires progress in artificial intelligence, presenting new opportunities for 
embodied robotics, neuromorphic sensing and actuation, and brain-inspired computing.

Models for Brain Diagnosis

Reverse-engineering the structure-function relationship in the brain remains an open challenge in modern 
neuroscience. However, there have been tremendous advances in methods to measure and quantify the 
structural backbone (DTI, MRI) and the functional evolution (fMRI, EEG, iEEG, MEG) of brain dynamics 
(see Figure 2.15 for an example). In this context, the maturation of the fields of connectomics and network 
neuroscience [101, 102] has given rise to the study of the brain as a dynamical system whose relevant dynamics 
are governed by network-wide rules. In this setup, the communication between neuronal populations is 
constrained by axonal bundles (white matter tracts) and is hierarchically regulated across many scales of 
spatial and temporal organization. That is, the interconnection scheme between neural components constrains 
the evolution of brain dynamics, and the integrative nature of brain function can be addressed from a complex 
network perspective.

Since the discovery of brain rhythms in 1929 [103], a multitude of brain functions have been associated with 
synchronization phenomena. During a cognitively demanding task or at rest, the brain exhibits a rich repertoire 
of large-scale synchronization patterns supported by its static interconnection scheme. These patterns are a 
measure of the coherence among the neural activities in different brain areas and are typically referred to as 
functional connectivity. Functional connectivity quantifies the level of correlation between time series of neural 
activity measured from distinct brain regions. Given a specific time window, taking the correlation across all 
brain regions yields a pattern that characterizes the synchronization levels between distinct regions in that 
window and is affected, for instance, by the tasks being performed and by external stimuli [104]. Importantly, 
functional connectivity can be used as a biomarker in multiple psychiatric and neurological disorders, and 
abnormal or decreased synchronized activity has been linked to neurological damage or cognitive decline due 
to aging [105, 106].
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Correlation Patterns of Brain Activity
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Figure 2.15: The human brain can be partitioned into a number of distinct brain regions, whose neuron 
activity can be measured through, for instance, an fMRI machine. Computing the correlation between fMRI 
time series in some time window yields a pattern in which each entry quantifies the level of correlation 
between the time series of two regions, and where clusters of synchronized regions can be identified. Such  
a pattern identifies what is also known as functional connectivity.

Dynamical brain networks can be used to model and analyze the spontaneous evolution of functional 
connectivity over time and in response to endogenous or exogenous stimuli. In these models, the brain 
structure is estimated by DTI or MRI technologies, and determines a graph that constrains the evolution of 
brain activity. Mathematically, the activity x obeys a differential equation of the form ẋ = f(x), where the vector 
field f(·) is based on the underlying anatomical network structure. A seminal line of work employs noise-
free, linear, continuous-time, and time-invariant models of network dynamics [107, 108]. While the choice of 
linear dynamics may overly approximate the intrinsic nonlinear nature of large-scale neural communication, it 
provides a starting point for the analysis of brain network dynamics, and enables the utilization of a battery of 
powerful tools from linear algebra [109]. Furthermore, at a coarse scale, brain activity seems to effectively fit 
linear models [110]. Nevertheless, more complex (nonlinear) dynamical models have been proposed.

The interaction between static large-scale structural architecture of the human brain and local oscillations 
of neural communities is a key factor in determining the functional connectivity patterns that are empirically 
observed through, for example, fMRI, especially when the brain is in a resting-state condition [111]. Motivated 
by this observation, extensive literature resorts to Kuramoto phase oscillators to model fMRI data [105, 112, 
113, 114, 106, 115, 116]. Many studies focus on the analysis of the oscillatory behaviors of neural populations 
that lead the emergence of functionally connected networks by modeling fMRI data as the output of networks 
of Kuramoto oscillators [105, 112, 114, 117]. The main working assumption is that at each node of the 
structural brain network exists a community of excitatory and inhibitory neurons whose dynamical state is in a 
regime of self-sustained oscillations. From a modeling standpoint, this assumption is equivalent to employing 
a network of weakly coupled Wilson-Cowan oscillators [118, 120]. In this setting, the neurons’ firing rates 
describe a closed periodic trajectory in phase space. That is, the firing rates delineate a limit cycle. Thus, the 
dynamics can be approximated by a single variable, which is the angle (or phase) on this cycle. This regime is 
then modeled by a network of coupled heterogeneous Kuramoto oscillators that are connected to each other 
according to the architecture of the human brain.

Another approach to constructing brain network models is to estimate dynamics directly from EEG recordings 
with no structural constraints [119]. One clinical application involves identifying where seizures start in an 
epileptic cortical network, called the seizure onset zone (SOZ). Drug-resistant epilepsy patients often undergo 
surgical treatment of the SOZ since medications are ineffective, but surgical success rates average 50%. 
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Localizing the SOZ is challenging and involves analyzing intracranial EEG recordings captured during 
seizures. A recent study estimates a sequence of linear time-invariant (LTI) models of the form ẋ = Ax for 500 
millisecond windows from iEEG snapshots. Then the “fragility” of an iEEG node j, defined as the minimum 
perturbation ||∆|| that is applied to the jth column of A as follows: ẋ = (A+∆)x, is computed from the model 
A. The hypothesis tested is that the most fragile nodes in the iEEG network are the SOZ, and it was shown  
that fragility outperformed standard spectral features and graph-theoretic measures in a cohort of 91 
patients treated across five epilepsy centers [121]. The processing steps from iEEG to a fragility heatmap  
is shown in Figure 2.16.

 

Figure 2.16: Processing steps to compute fragility heta map from intracranial EEG data.

Control for Brain Medicine

The brain is constantly juggling between multiple cognitive states as the result of external stimuli or spontaneous 
activity. The topological and algebraic features of network systems that enable exogenous/endogenous inputs 
to steer the system’s state to desired values can shed light on how distinctive stimuli affect the system-
wide state of the brain. In engineering terms, this analysis can be performed by investigating controllability 
of neural network systems. The main contribution of this line of research is to lay the groundwork for the 
extremely challenging task of synthesizing control signals to safely and precisely alter brain activity. Seminal 
work has derived prescriptive conditions for structural brain networks to be theoretically controllable [122]. The 
investigation of controllability properties has also shown that i) some regions are easier to control [123], ii) brain 
networks possess distinct controllability profiles with respect to randomly generated topologies [124, 125], 
and iii) it is possible to characterize the organizational features that allow the exact linearization of nonlinear 
(neural) circuits through feedback loops [126].

Going beyond the study of controllability, network control theory provides tools such as optimal control 
methods that have been used, for instance, to quantify the energy needed to switch between different cognitive 
states [127]. Optimal control principles have also been used to integrate structural and functional brain data 
to reveal the relationship between different memory states and the underlying anatomical maps. In fact, it is 
possible to estimate how regional activity would deviate from its initial state in the presence of external current 
stimulation and to test which brain regions would efficiently improve memory encoding when stimulated [107]. 
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Other contributions of optimal control theory reveal that, compared to healthy controls, subjects affected 
by schizophrenia show altered network control properties, including decreased stability of working memory 
states [108].

Because synchronization (and, thus, functional connectivity) can also be used as a biomarker, some work pursues 
the ambitious idea of analyzing, predicting, and treating neurological disorders by enforcing the formation of 
desirable patterns of neural activity to recover from abnormal or undesired ones. Such a goal can be achieved 
by developing a framework that allows to control functional connectivity by means of minimally invasive and 
localized interventions [116, 128]. The notion of cluster synchronization—which describes synchronized 
groups of regions that coexist in the brain network—enables the blending of mathematically rigorous methods 
with physiological models of brain activity, with the goal of steering whole-brain synchronization dynamics. 
In this framework, network parameters such as natural frequencies and oscillators’ connectivity can be used 
as control knobs to achieve different configurations of synchrony. Minimally invasive control actions are then 
computed by casting the pattern assignment problem as optimization methods.

Figure 2.17: Modeling, analysis, and control of abnormal neural activity. Networks of nonlinear oscillators can 
be used to inform the design of sparse and localized interventions.

Normal Depression Bipolar Schizophrenia OCD
Normal Depression Bipolar Schizophrenia OCD

θ̇i = f(ωi, θ)

Modeling & Analysis

i

i

Optimal & Localized
Interventions



82

Brain-Machine Interfaces

Physiological signals can be measured directly from the brain, opening the possibility of decoding these 
signals in real time to control devices and to report internally represented information in the brain. The field of 
brain-machine interfaces aims to deliver technology that will allow individuals to directly control and interact 
with external hardware using brain signals alone. Despite huge progress in this field, significant challenges 
remain, some of which are fundamental. The human brain is a large and fragile organ enclosed in a skull 
several millimeters thick. Electromagnetic signals obtainable noninvasively (for example, via scalp EEG) are 
thus subject to significant attenuation and interference from external sources, as well as larger muscle-related 
potentials from the face and neck. Even when placed inside the skull, (ECoG, intercranial EEG), signals lack 
spatial resolution and represent pooled measurements from many thousands of neurons, mostly those located 
in superficial layers of the cortex. Other modalities such as fMRI are not practical for most BMI applications as 
they lack temporal as well as spatial resolution and require a subject to lie immobile in a large and expensive 
piece of medical equipment.

Together, these considerations explain why high-resolution, high-bandwidth BMI applications require invasively 
measured brain signals [129]. Such signals are usually obtained from microelectrode arrays that are implanted 
in the brain that can gather extracellular potentials from nearby cells and nerve fibers. Array technology is 
rapidly advancing in its channel capacity (number of electrodes), biocompatibility, and signal resolution [130]. 
It is now possible to measure activity at single cell resolution from populations of thousands of cells. However, 
resolving individual cells requires source separation, as each recording channel will typically detect signals 
from many tens of individual cells. So called single-unit resolution can be obtained by offline source separation, 
colloquially known as spike sorting, but current state-of-the-art techniques preclude source separation in real 
time. As a consequence, signals used for controlling devices (such as prosthetic arms, speech synthesizers, 
or computer cursors) operate the superposed field potentials obtained from each electrode in an array [131, 
132]. Thus, the measured signal is essentially a low-dimensional projection of the state-space representing 
neural population activity. Remarkably, it is often possible to control devices with several degrees of freedom 
in real time despite this coarsening of the spatial signal [133, 134, 135, 136, 137]. State-of-the-art BMI devices 
have enabled human control of robotic arms [135] and text transcription speeds of 30 characters per minute 
on a tablet computer [138].

Cutting-edge BMI technology presents many open control and signal processing problems. Neural signals 
obtained from intracranial probes are subject to nonstationary disturbances due to electrode and tissue 
movement and changes in electrode impedance due to gradual changes in the wet electrochemical interface 
of an extracellular probe. Consequently, it is necessary to devise methods for tracking and recalibrating BMI 
decoders. Just as mechanical computer and machine interfaces present nontrivial design considerations 
for control with a human-in-the-loop, there are means of optimizing the stability and responsiveness of BMI 
controllers, taking the dynamics of neural signals into account [139, 140, 141, 142]. Finally, the brain itself 
is an adaptive controller. This means that the long-term dynamics of the human-BMI system are subject to 
ongoing learning and reorganization of neural dynamics. This means that BMI users can often compensate 
for imperfections in BMI performance [143, 141]. Conversely, it makes the long-term performance of BMI 
challenging to guarantee, likely requiring deeper knowledge of the dynamics of neural activity on long 
timescales as humans learn, adapt, and experience daily life [129].
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Neuromorphic Machines

To date, the brain remains our model of an intelligent machine. But despite the tremendous progress of 
machine intelligence over the last 50 years, the gap between machine intelligence and brain intelligence 
remains phenomenal. Wiener’s cybernetics vision of a unified theory of control and communication in the 
animal and in machine remains to date a distant dream. One could even argue that the distance has never 
been greater in the digital age, where bits and automata reign supreme in artificial intelligence while they are 
completely absent from animal intelligence. At least in the pre-digital age of Wiener, analog electrical circuits 
provided a common language to model signals and systems in the animal and in the machine.

In the midst of the golden age of silicon technology, Carver Mead realized that digital technology would 
eventually face limitations that would call for a post-digital age [144]. He became fascinated by the efficiency 
gap between the digital technology of artificial intelligence and the spiking technology of animal intelligence 
and created the new field of neuromorphic engineering. Karl Åström immediately recognized the significance 
of a spiking technology for control, in a seminal article that has remained largely unnoticed to the present time 
[145]. Ten years later, he wrote the first article about event-based control [146]. Event-based control is now 
flourishing, but still in its infancy.

It takes more than a spike to make a machine intelligent, but the question is whether spiky rather than analog or 
digital communication is essential to intelligence. Control is nowadays divided into automation and feedback 
control. We praise automation for its reliability, which is owed to the discrete nature of bits and automata. 
We praise feedback control for its adaptation, which is owed to the continuous nature of analog signals and 
physical systems. But automata are inefficient in their adaptation capabilities, and feedback systems are 
unreliable in their decision-making. Spiking control systems [147] will perhaps be essential in mimicking the 
ability of nervous systems to combine adaptation and reliability in a way that defeats any current form of 
artificial intelligence.

The forthcoming decade will see the emergence of sensing and actuator devices that are spiky and event-
based rather than analog or digital. Event-based cameras revolutionize the technology of vision, but it is still 
largely unknown whether and how they will revolutionize the intelligence of artificial vision [148]. Interconnecting 
event-based sensors and event-based actuators will lead to a novel generation of machines. Whether the 
intelligence of those machines will be one step closer to the intelligence of animals is a grand challenge 
for control theory. Building reliable functions from uncertain components is at the core of feedback control. 
Neuromorphic control will aim at imitating the animal world in it success to achieve both adaptation and 
reliability across a broad range of temporal and spatial scales [149].

Control theory has championed the concept of control as variable sharing, and of variable sharing as being 
facilitated between systems that share external properties [150]. Whether we think about designing artificial 
systems that will interact with animal brains or artificial systems that emulate animal brain functions, we will 
need to integrate some essential properties of animal brains that are currently absent in AI. Spikes, excitability, 
and neuromodulation are some of those key elements. The dramatic progress of neuroscience, the growing 
promise of brain medicine, and the booming technology of neuromorphic engineering provide a clear call for 
this road map document.
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CHAPTER 3

Technological Trends
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Technological Trends

An agent that is capable of sensing its environment and taking actions to maximize its utility is said 
to possess artificial intelligence (AI). Half a century of control systems has produced a rigorous 
theoretical framework for addressing this issue in highly structured environments. Over the next 
30 years, we expect control systems to merge with AI, enabling big data analytics to inform robust 
autonomous systems that can be deployed in real-world, human-inhabited environments.

3.A AI and Big Data

John Baras, Mykel J. Kochenderfer, James Anderson, Luca Schenato

Innovations in computation have dramatically impacted the field of control systems. As computing has 
become faster, smaller, and more ubiquitous, these trends have transformed control systems design and 
implementation. As networking has grown over the past three decades, new visions of networked and 
distributed control have emerged. While developments in computation and networking will continue to 
impact control systems, this chapter discusses new scientific and technological trends that are likely to 
shape the evolution of control systems over the next decade. 

First, we discuss the dramatic rise of artificial intelligence and big data. While the objectives of AI and 
control systems are conceptually aligned, recent advances in AI infrastructure and emerging AI models 
and architectures present new opportunities for our field. In a totally different technological space, we are 
witnessing a second electrification revolution in the transportation sector. Control will be affected by this 
trend and new opportunities will emerge. As a more disruptive trend, biology may serve as a new substrate 
for building new biological systems for engineering, agricultural, energy, and healthcare functions. Control 
can be a critical design methodology in modeling, robustness, and the design of biological engineering 
systems. 

Finally, the focus of robotics and autonomy is transitioning from indoor industrial robotics to robotics in 
the wild, bringing new challenges for control systems. Each section of this chapter describes these trends, 
opportunities for control systems, and recommendations for going forward.
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Abstract The emergence of AI, big data, and machine learning has played a major part in what is now referred 
to as the Fourth Industrial Revolution or Industry 4.0. Breakthroughs in these fields have provided us with 
enhanced autonomy, nearly real-time decision-making, and smart infrastructure. Despite numerous success 
stories, there have been many severe failures and issues of reliability and robustness, especially in the context 
of human-machine interaction. Control engineering has a long history of providing both rigorous theory and 
implementable algorithms for providing guaranteed performance and robustness bounds in dynamic and 
uncertain environments. In this chapter, we address how control systems and AI can synergistically evolve to 
solve societal-level engineering problems.

3.A.1 Introduction

AI is a field concerned with designing and building intelligent agents that sense the environment and take 
actions that affect that environment [1]. There are deep connections with systems and control theory, though 
to some extent the AI community has developed independently. The AI community formed with the 1956 
Dartmouth Summer Research Project on Artificial Intelligence, where academics such as John McCarthy, 
Claude Shannon, Marvin Minsky, Herb Simon, and Alan Newel discussed ways to build machines that could 
exhibit intelligence [2].

An important component of AI is machine learning (ML) [3], where data is used to build models [4]. Major 
breakthroughs in AI came with the “big data” revolution [5]. Large datasets [6] enabled breakthroughs [7] in 
many domains, notably in computer vision [8] and natural language processing [9]. Machine learning methods 
have influenced approaches in the control community and vice versa [10]. There are other areas of AI outside of 
ML that may become ripe for synergies with control theory, including knowledge representation and reasoning 
(KRR) [11].

AI is continuing to evolve in many different directions. This section will summarize some important technical 
and scientific trends in AI and big data that may be beneficial to the controls systems community. In addition, 
this section will sketch some of the important challenges and opportunities for the control community to 
contribute.

3.A.2 Technical Trends

There are several technical trends in AI and big data that may be helpful in the engineering of control systems 
(see Figure 3.1 for a schematic and Figure 3.2 for technology trends).

Hardware: The increased availability of inexpensive hardware for storing and processing large datasets has 
helped enable major advances in AI. Many ML applications use neural network representations of models 
and decision strategies, often with many layers and many neurons. The standard method for optimizing the 
parameters in these neural networks to achieve a given task, such as classification or control, is stochastic 
gradient descent [12]. Computing architectures like GPUs and TPUs [13] can help make computing gradients 
efficient enough to train extremely large networks [14]. There have also been recent innovations in chip design. 
For example, so-called “neuromorphic” chips use a biologically inspired design modeled after neurons and 
synapses [15]. Such designs may provide greater parallelism with significantly reduced energy costs.
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Software: Training neural networks is key in the computation of gradients. There have been software advances 
that make it easy for users to compute gradients of not only neural architectures but also general software 
programs. Automatic differentiation has been around for decades [16], but there have been several software 
packages that have emerged that enable practitioners to efficiently define computational models and optimize 
parameters [17]. Some, such as PyTorch [18] and TensorFlow [19], have been central to large machine learning 
systems.

Simulation Frameworks: The AI community has spurred the development of many high-quality simulation 
frameworks, many of them open source. The OpenAI Gym [20] has emerged as a standard toolkit for 
reinforcement learning. It contains a collection of interactive benchmark problems, providing a common 
interface for evaluating different reinforcement learning algorithms. The physics engine MuJoCo [21] has been 
used extensively in robotics research. ROS [22], a robot operating system, has greatly enhanced the pace of 
academic robotics research and has seen broad deployments in industry.

Cloud Computing: The AI community has greatly benefited from the availability of cloud computing 
infrastructure. Training on large datasets often requires massive computing resources that may only be needed 
sporadically. As an alternative to numerous research labs and companies purchasing and maintaining their 
own infrastructures that are only used in bursts, there has been a strong movement toward the cloud, where 
resources are pooled and users only need to pay for the computing they use. Although major advances in AI 
are still being led by industrial research laboratories with enormous computing resources of their own (like 
Google and Microsoft), the availability of cloud computing resources from AWS, Azure, and GCP has enabled 
academic institutions to contribute. Cloud computing also allows AI applications to easily scale up from initial 
research prototypes to deployed systems.

3.A.3	 Scientific	Trends

There are several scientific trends in AI and big data that may also be helpful in the engineering of control 
systems.

Reinforcement Learning: A subfield of AI known as reinforcement learning is concerned with the problem of 
learning how to choose actions in a dynamic environment to maximize a reinforcement signal [23, 24]. Although 
this field dates back decades, it has attracted tremendous attention recently, especially with the ability to train 
neural networks to play Atari games at a human-competitive level based on pixel data [25]. Reinforcement 
learning has also led to machines beating the best human experts at Go [26], which for many years was 
suspected to be beyond the reach of AI. Major advances have also been made in applying reinforcement 
learning to cooperative decision making [27].

Neural Architectures: The AI community has explored a wide variety of neural network models to address 
fundamental issues like scalability and gradient estimation in recurrent networks. Examples of such 
architectures include long short-term memory (LSTM) [28], Gated-Recurrent Units (GRUs) [29], transformers 
[30], and Generative Adversarial Network (GANs) [31]. Many of these architectures can be used for control 
systems.

Trustworthy AI: Many of the early successes of AI have been in domains that are not safety-critical. However, 
there is growing recognition that AI techniques can be helpful in building high-stakes systems, such as 
automated driving and aircraft collision avoidance [32]. Compared to traditional techniques, AI has the potential 
to provide greater robustness to the various sources of uncertainty inherent in the real world. Major research 
efforts are underway in explainability [33], validation [34], and verification [35].
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3.A.4 Challenges and Opportunities

The previous sections illustrate many exciting new hardware and software technologies in which control 
systems has the potential to advance fundamental progress in the broad area of AI and big data. The potential 
downstream applications where AI is poised to make a substantial contribution are so numerous that we 
do not attempt to enumerate them all. However, each societal area described in Chapter 2 of this road map 
is well within this scope. In particular, control engineering is uniquely placed to help analyze, design, and 
provide a better understanding of neural network architectures; provide a principled framework for uncovering 
and incorporating robustness into AI algorithms and pipelines; and provide verifiable guarantees of safety for 
complex human-in-the-loop, AI-driven applications. The remainder of this section surveys the challenges and 
opportunities that control engineers face at the rapidly evolving intersection of control, AI, and big data.

Designing Neural Networks: As described in the previous section, numerous different neural network 
architectures have been designed and promoted. A key question that arises is, how do we choose the 
appropriate architecture for a given task? Or, once an architecture has been chosen, how do we optimize it for 
the task at hand? For example, how many hidden layers should the network have and what activation function 
should be used?

Figure 3.1: Many large-scale applications generate Big Data that has to be distilled by AI and ML into interpretable 
data-driven models and structured Knowledge Representation and Reasoning (KRR). Integration of these 
methods for control and decision is a major challenge.
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Going a step further, can we design the neural network architecture in a principled manner so that the verification 
process is simplified? At present, there is no systematic theory for solving such problems as the design space 
is discrete and unstructured [36]. The control community is well-positioned to contribute to solving such open 
problems. In particular, co-design and model reduction techniques may offer a path to progress. Co-design 
aims to optimize some subset of sensor and actuator placement and communication topology [37, 38, 39], 
while model reduction searches for more simple network structures given an allowable mismatch error [40]. 
More generally, approaches to control system architecture design (see Section 4.E) may offer deeper insight 
into designing neural networks.

Physics Inspired Learning: Many of the target applications of AI and ML (such as computational fluid dynamics 
[41] and climate modeling [42]) involve mapping input/output sample data collected from physical processes 
or experiments and building a map from the input space to the output space. This must be performed in a 
way that allows the network to correctly classify unseen data or predict future outputs. One of the biggest 
challenges in this area is that the models produced (for example, as encoded by the weights and architecture 
of a neural network) are unable to directly take into account the underlying physics of the process. For example, 
it is not possible to force the network to model conservation, Newtonian, or thermodynamic laws. As a special 
case, consider a simple mechanical system that can be “accurately” modeled by Newton’s second law, F = 
ma. The same tension between data-driven modelling and system identification arises in control engineering. 
Surprisingly, one of the most promising methods for achieving physically realistic models shares common 
ground with the most basic control strategies: work in the frequency domain [43].

Figure 3.2: Current technology trends like Edge-Computing and Distributed Databases as well as the need for 
energy and carbon-footprint reduction is pushing for distributed learning, distributed knowledge acquisition, 
and control/decision architectures beyond federated learning.
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Federated Learning: Federated learning (FL) [44] was developed as a means to endow distributed optimization 
algorithms with properties desirable for situations in which training data is stored on individual devices in order 
to ensure data privacy [45]. Learning is carried out on each device and, based on a client-server model of 
communication, only summary statistics from devices are sent to the server. The server then computes an 
average and broadcasts this average to all clients. Thus, participating devices do not have to share their data, 
but they are able to benefit from the aggregated model [46, 47]. The enabling features of FL are that it allows 
for:

i. Data and device heterogeneity: Data held across clients need not be independent and identically 
distributed (IID). Moreover, participating devices will have different computational and storage 
capacity profiles.

ii. Reduced communication overhead: Minimal information is sent between client and server, and 
there is no client-to-client data exchange.

iii. Partial participation: FL algorithms will be resistant to client dropout and failure. This is important 
as client devices such as cell phones frequently and unpredictably lose connection. There is a clear 
synergistic relationship between control and FL. Distributed optimization algorithms [48, 49] with 
the properties described above are necessary for synthesizing distributed controllers for networked 
systems [50, 51]. Moreover, the communication efficiency and robustness that FL exhibits is something 
that distributed controllers for large-scale CPS strive for [52]. Conversely, theory in the area of network 
control can be used to develop and analyze the communication robustness aspects of FL algorithms. 
As data privacy becomes more important, and the internet of things (IoT) becomes more widespread, 
the interplay between FL and control will rapidly strengthen.

Simulation to Real-World Robustness: As mentioned in Section 3.A.2, one of the byproducts of AI research, 
and reinforcement learning in particular, is the wealth of high-fidelity simulation engines with quality application 
programming interfaces (APIs). These environments allow AI-based algorithms developed from a particular 
data set to be tested in physically realistic environments. More often than not, when simulated in a more 
complex environment, algorithms fail spectacularly. Utilizing feedback to provide robustness to model 
environmental uncertainty is the bread and butter of control engineering. The last few decades have produced 
a rich framework of robust control frameworks for linear, nonlinear, hybrid, and stochastic dynamical systems. 
More recently, these developments have come to the model-free paradigm. Incorporating and expanding these 
techniques into AI pipelines is a clear example of how control engineering can make a direct and substantial 
impact on AI.

Distribution Shift: ML has been shown to perform exceptionally well in many complex application areas 
such as computer vision, autonomous driving, and bipedal robotics. However, the core assumption—one 
that is often broken in practice—is that the data used for training and testing follows the same distribution. 
There are no guarantees for how a system will perform when faced with an out-of-distribution input [53, 54]. 
Indeed, many ML pipelines produce systems that fail catastrophically when faced with unseen test data or are 
deployed to real-world systems. Distribution shift is one of the main obstacles that prevents AI systems from 
being deployed in the wild. Feedback controllers designed from learning-based approaches have been shown 
to outperform traditional model-based controllers in many applications [55, 56]. Such outcomes typically 
occur in scenarios in which the task environments and/or the systems to be controlled are difficult to model 
accurately. 
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However, closing the loop around the plant and a learned controller can produce a distribution shift, since 
the behavior of the controlled system will differ from that of the open-loop system. Control theory has a 
wealth of tools that can contribute to mitigating the effects of distribution shift, including model validation and 
experiment design, robust optimization, and safety-based control.

Neurosymbolic Approaches: Neurosymbolic AI can improve how a neural network arrives at a decision by 
adding classical rules-based (symbolic) AI to the process. Motivated by neuroscience and studies of human 
perception and cognition, understanding how the human brain's massive neural networks create, store, and use 
concepts has been a long-standing challenge in AI research [57]. The ability to use symbols is a defining feature 
of human intelligence. However, neuroscience has yet to explain the fundamental neural circuit mechanisms 
for flexibly representing and manipulating abstract concepts. Results in fundamental learning theory suggest 
that the process of learning evolves between steps of learning new concepts and then compacting existing 
knowledge to develop meaningful knowledge enhancements. Knowledge compaction results in reduction of 
memory, fast recovery of knowledge and information, and fast comparison of new features and concepts with 
known (stored) ones. 

This is particularly important for systems and control problems, as data and models involve large sets of 
trajectories, models, and heterogeneities in form and symbolism. Neurosymbolic programming [58] is an 
emerging area that bridges the areas of deep learning and program synthesis. As in classical machine learning, 
the goal is to learn functions from data. However, these functions are represented as programs that can use 
neural modules in addition to symbolic primitives and are induced using a combination of symbolic search 
and gradient-based optimization. Neurosymbolic programming can offer multiple advantages over end-to-end 
deep learning. Programs can sometimes naturally represent long-horizon, procedural tasks that are difficult to 
perform using deep networks. Neurosymbolic representations are often easier to interpret and formally verify 
than neural networks. The restrictions of a programming language can serve as a form of regularization and 
lead to more generalizable and data-efficient learning. Compositional programming abstractions can also be a 
natural way of reusing learned modules across learning tasks.

Distributed Learning and Control: Recent technological advances have led to the widespread use of devices 
with sensing and computational capabilities, including mobile phones, medical devices, vehicles, and smart 
sensors. These become sources of abundant data and enable the application of machine learning in a range 
of previously inaccessible scenarios. In a traditional centralized approach, the data collected by these devices 
would be transmitted to a central location and there used to fuel a learning algorithm [59]. Such a centralized 
setup, however, requires the transmission of large volumes of data (potentially overtaxing the network) and 
may expose the users to privacy risks, especially with data from personal devices.

On the other hand, the distributed learning paradigm presents a promising alternative, in which these 
computationally enabled devices can cooperate in the learning of a model by processing locally sourced data 
and communicating with each other. The adoption of a decentralized perspective would allow the control 
community to build onto the wide literature on multi-agent systems—from consensus algorithms to distributed 
optimization and distributed control [60]—to design novel distributed learning methods and analyze their 
performance. In turn, these distributed learning algorithms can complement traditional control techniques by 
enabling data-based control in distributed, cooperative scenarios [61].
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Recommendations

For young researchers: It is now commonplace for students specializing in control to take classes 
in machine learning, data science, reinforcement learning, and AI. Likewise, these fields can greatly 
benefit from control systems, both centralized and decentralized. Initial attempts to consider iterative 
algorithms as dynamical systems have indicated the promise of such a cross-disciplinary approach. 
Systems thinking and concepts have even more to offer. In the short-term, relevant topics include:

• The development and application of systematic complexity measures

• Rigorous characterizations of hardware and learning architectures and the resulting  
trade-offs with performance and robustness

• Effects of decision-making across multiple timescales

Longer term goals will need to address the fundamental problems like:

• The distribution shift problem

• The mitigation of the sim-to-real gap

• The incorporation of symbolic (rule-based) AI and simple physics-based models into  
data-driven ML pipelines

It will be essential to overcome these obstacles as human–machine systems and human-centered AI are 
investigated from the perspective of control and decision-making. Such efforts hold promise for creating 
a more integrated and quantifiable theory and methodology for the use of ML and AI in control. This will 
shape and support the emerging field of trusted autonomy and human–machine systems.

For funding agencies: As humans and machines increasingly commingle in sociotechnical systems 
(e.g., the metaverse), increased funding can have tremendous impact on all aspects of life, work, 
society, economy, climate, and health. Short-term needs include:

• Expansion of research portfolios in human-machine systems and human-centered AI for 
control and decision systems involving both single and multiple agents

• Support for experimental testbeds for human-machine and human-centered AI systems

• The promotion of joint programs with human behavior and neuroscience experts

In addition to the technological and theoretical hurdles that need to be addressed, we need to make 
a long-term commitment to assessing the benefits and risks of AI (and control) technology. Long-
term needs include:

• Support cross-disciplinary programs that can address the negative effect of prolonged 
exposure to social media on teenagers and develop methods to mitigate risks

• Integrated systems science and engineering approaches, methodologies, and software suites 
to synthesize these complex systems with some assurance of expected and robust behavior

Support in these areas will be necessary to bridge the sim-to-real robustness issues that prevent 
promising AI systems from being fully deployed.
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Abstract Global trends foretell an increased demand for electrified infrastructure to meet the needs of society. 
Some of this demand is driven by governmental and intergovernmental mandates to reduce our collective 
carbon footprint, while some is driven by market forces. The percentage of energy needs serviced by electrified 
systems is increasing steadily with no signs of leveling off, and projected needs cannot be met by managing 
existing infrastructure. This section advocates for a smart coupling of power generation, storage, consumption, 
and reuse within key industries like transportation and manufacturing as well as across societal sectors. For 
example, sectors focused on heating, such as district heating systems, could couple with sectors providing 
electricity to improve the movement of energy among domains. If appropriately controlled, the resulting system 
of systems could optimize the utilization of precious energy resources. While the connection and control of 
these complex systems will not, by itself, accommodate the growing needs of an energy-hungry world, this 
proposed approach can ensure that the resources consumed will be minimized. Additionally, this approach 
can empower a well-planned deployment of new resources, thereby reducing the need for investments in new 
infrastructure. Specific control-relevant topics are suggested for future investment to enable a safe, resilient, 
and reliable transition to greater electrification.

3.B.1 Introduction

Drivers for Electrification

Electrification means powering a system or a process by electricity, especially when electrical power replaces 
another energy source. Currently, electrification is taking place in almost every sector. There are several 
drivers of this trend which vary in importance between sectors. According to the World Economic Forum [62], 
electrification is critical to decarbonization, which in turn is crucial for reducing the impact of human activity on 
the global climate. Decarbonization primarily involves substituting fossil fuels with renewable energy such as 
wind power, PVs, hydro power, etc. Currently, most energy use is not electrical. As can be seen in Figure 3.3, 
only about 15% of global energy use is electrical. Its proportion, however, is clearly and steadily increasing. The 
drive towards further electrification is driven in part by governmental regulations, especially by governments 
that have signed the Paris Agreement [63].

The increased use of electrical energy to support human needs is a long-term megatrend that 
affects all aspects of society, including transportation, manufacturing, and housing. Control 
scientists and engineers will play a critical role in accommodating continued growth by optimally 
managing key energy assets in an efficient and reliable manner.

3.B Electrify Everything

Andrew Alleyne, Jakob Stoustrup, Aranya Chakrabortty, Thomas Parisini, Lucy Y. Pao



96

Figure 3.3: World total energy consumption by source. Source: Key World Energy Statistics 2021, International 
Energy Agency, 2021 https://www.iea.org/reports/key-world-energy-statistics-2021 (reprinted with permission).

In many sectors, the drive towards electrification is also motivated by considerations of performance and 
productivity [64]. One example is in agriculture, where it has been realized that electrical machinery can 
outperform conventional machinery in terms of performance, productivity, and safety, as well as environmental 
impact. Similar advantages accrue across a range of market sectors.

Trends in Electrification

Electrification is already a megatrend in many sectors, including transportation, manufacturing, construction, 
agriculture, and the energy sector itself. Electrification is increasingly a large part of all areas of life and will 
continue to grow for the foreseeable future.

Electrification in the Energy Sector

Currently, only a small percentage (~15%) of the world’s energy is generated by electricity. This proportion, 
however, is rapidly growing across the world.

Wind power accounted for 6.59% of global electricity generation in 2021, which is nearly exponential growth 
from its 1.66% share in 2010 [65]. Wind power is estimated to have a potential for delivering at least 40 times 
the current worldwide consumption of electricity, which corresponds to at least five times total energy use 
across all sources. Photovoltaic (PV) power also grew exponentially, from 0.15% of global energy production in 
2010 to 3.7% in 2021 [66]. In 2020, the global energy consumption was 557 EJ. PV could theoretically supply 
three to 90 times the world’s current energy consumption [67].

As the levelized cost of energy for wind and PV comes down, their growth rates will continue. While the steady-
state percentage contribution is unknown, it is clear that their role will continue to increase as a proportion of 
our global energy mix. Notably, other renewables and low-carbon energy sources such as hydropower and 
nuclear make up the remaining contribution to electrical generation. However, their percentage of the market 
over the past 10+ years has not grown at the same rate as wind and PV.
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Electrification in the Transportation Sector

Ground vehicle transportation has seen an exponential growth in electrification, from under 0.01% of global 
car sales in 2010 to over 8.6% of global sales in 2021. This is a vital trend, given that transportation accounts 
for around one-fifth of global CO₂ emissions. Increased levels of electrification have cut across all modes 
of transportation, including marine, aviation, rail, and road. Even if full electric propulsion is not the mode 
of mobility, the increased use of electrical systems onboard these systems has increased tremendously. In 
marine systems, long-range shipping is still largely reliant on fossil fuel, but that fuel now runs small microgrids 
to power electric propulsion systems as well as ancillary loads. The result is a more efficient mobility system.

Realizing that energy for transportation is very effectively stored in chemical form, one important trend will be 
the continued development of technologies that can use electricity (such as wind and solar) to produce liquid 
fuels (through, for example, electrolysis and subsequent catalysis of the produced hydrogen). One emerging 
term for this pathway is Power-to-X (P2X). Current investments are in the hundreds of millions of U.S. dollars 
and this is likely to increase by at least an order of magnitude over the next decade. If successful, this will 
accelerate the spread of electrification across a wider swath of transportation applications, albeit with some 
remaining CO₂ emissions cost.

Electrification in the Industrial Sector

Industry employs a wide variety of processes that are currently supplied by energy forms other than electricity. 
In 2017, electricity constituted 21% of total estimated industry energy consumption [64].

For industrial robotics and machinery, the use of electricity is approaching 100%. The penetration of 
electrification in other process industries is mainly related to the temperature range of the industrial processes 
involved. For low temperature processes (like washing, rinsing, and food preparation), electrification has already 
a high penetration. The same applies to medium temperature processes (like drying, evaporation, distillation, 
and activation). For high temperature processes (like steam reforming and cracking in the petrochemical 
industry), there has been a moderate amount of electrification. Low, medium, and high temperature processes 
that have mature electrical solutions account for roughly 50% of all industrial processes [64]. For very high 
temperature processes, i.e., above 1,000°C (like melting of glass in furnaces, reheating of slab in hot strip 
mills, and calcination of limestone for cement production), electrical processes are currently in research or pilot 
phases but are evolving rapidly as shown in the following example.

One noteworthy instance of electrification making industrial inroads is in green steel production. Iron and 
steel necessitate massive energy inputs: the iron and steel sector used 33.57 EJ of energy in 2018, and this 
represents a significant portion of steel manufacturing costs, ranging from 20% to 40% [68]. From raw material 
preparation to casting, rolling, and finishing, all processes require very high temperatures. For example, 
blast furnaces and electrical arc furnaces (EAFs) operate around 1500 to 1600°C. When outlining its 2020 
technology road map toward more sustainable steelmaking, the International Energy Agency (IEA) suggested 
direct electrification as one of the core technologies. Figure 3.4 depicts a state-of-the-art steelmaking plant 
in which two green power-electronics-enabled solutions are implemented, illustrating the significant impact 
of electrification in the iron and steel industry. Two elements are highlighted in Figure 3.4: i) induction-based 
reheating furnaces (RHFs) and ii) high-performance real-time control of EAFs. Both solutions are enabled by 
high-speed nonlinear control of power electronics devices. 
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Figure 3.4: Layout of green steel production plant (Courtesy Danieli & C. S.p.A., modified with permission). CO₂ 
reduction is expressed in kilograms of CO₂ per ton of liquid steel. Two power-electronics-enabled electrification 
solutions are highlighted.

For the RHFs, an induction slab heating approach is used with an operating discharge temperature of 1,250°C, 
a power consumption of 320 kWh per ton, and 15 MW of typical installed power. Electric heating by induction 
makes it possible to directly inject heat in the core of the slab instead of only the surface, thereby increasing 
efficiency. For the system of Figure B, the electrified RHFs yield a 25% overall power savings and prevent the 
emission of ~74 kg of CO₂ per ton of steel. The EAFs operate by replacing series reactors, special furnace 
transformers, and static volt ampere reactive (VAR) compensators with real-time control of the arc current 
behavior through power electronics current generators. This solution saves approximately 50 kWh per ton of 
equivalent energy, 10% of electrical energy, and reduces about 150 kg of CO₂ per ton of steel.

The scale of the numbers justifying electrification are impressive. Even more impressive is the introduction and 
acceptance of electrified systems into industrial processes that were previously considered outside the scope 
of feasibility for electrification. As the barriers to sector penetration fall with improved technology, electrification 
will inevitably be everywhere in our future.

3.B.2 Current Status

As discussed, electrification is an ongoing trend in all sectors and is gaining speed in most areas. The number 
and variety of technologies involved in this transition is mind-numbing. For most of these technologies, control 
engineering plays an important role, as accounted for in several of the other chapters in this road map. Electrified 
systems have the obvious advantage of being far easier to integrate with information-based systems than their 
mechanical or chemical counterparts. Computer-based sensing, communication, and control systems are at 
the core of our control systems technology infrastructure. They can interface with electrified systems better 

Power-electronics-driven 
Electrical Arc Furnace (EAF):

-150 kgCO2/ton; -10% electrical 
energy; 95 MVA Apparent Power

Power-electronics-driven induction 
Re-Heating Furnace (RHF):

-40 kgCO2/ton; 24% energy savings 
(1.4MW installed power)
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than other systems since both sensing and command are already in its domain. This is unlike mechanical 
systems where behaviors must be transduced into electrical systems for sensing or electrical systems must 
be converted for actuating mechanical components.

One major challenge posed by the global electrification trend is the immense capacity required for new and 
enhanced electrical infrastructure. Scaling up from 15% of energy use to close to full electrical coverage would 
require an enormous, and possibly financially prohibitive, expansion of the current electrical infrastructure. To 
avoid a sudden explosion in required investments and resources, control systems can play a crucial role in 
facilitating smart operations and sector coupling.

Smart Operation of Infrastructure

Smart operations offer the opportunity to reduce needs for excess generation and storage capacity. The 
principle is illustrated in Figure 3.5. In order to be able to meet consumption needs at all times, a design 
without smart operations (i.e., control) would lead to capacities for generation and transmission governed 
by peak consumption values. Any generation source with a high degree of variability (e.g., wind and solar 
power) would require enormous capacities for excess generation and/or storage. Intelligently controlling the 
components of the infrastructure can reduce the needed capacities.

Controlling consumption in such a way that peak values are reduced (“peak shaving”) would lead to reduced 
requirements for generation and transport. Similarly, controlling storage could reduce the need for excess 
generation by storing energy when generation exceeds consumption (and draining energy in the opposite 
situation). The need for energy transmission can also be reduced by temporal smoothing facilitated by 
appropriate control of storage capacity. Finally, the controllable part of generation capacity can be used in a 
similar way to reduce transmission capacity by controlling storage levels appropriately.

Figure 3.5: Smart operations of an infrastructure. By coordinating operation of generation, consumption, and 
storage, the total need for generation, storage, and transmission capacity can be reduced.
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Sector Coupling Between Infrastructures

Sector coupling has great potential for ensuring that capacity is utilized better across all energy-related 
infrastructures. To put this into action, an entirely new level of control in the hierarchy might be required. 
The principle is illustrated in Figure 3.6. Sector coupling is primarily based on energy conversion between 
two energy-related infrastructures. Converting energy from Infrastructure A to Infrastructure B at times when 
A has excess generation and B has a deficit can reduce the need for overall excess generation, storage, 
and energy transmission capacity in the combined infrastructure system. By controlling conversion between 
infrastructures:

• The capacity needed for generation can be reduced by applying conversion in peak demand 
situations

• The capacity needed for storage can be reduced by applying storage and consumption capacity  
in downstream infrastructure

• The capacity needed for transmission can be reduced by applying conversion as "virtual storage"  
and thereby obtaining temporal smoothing

Figure 3.6: Sector coupling. By controlling the conversion of energy appropriately between two infrastructures 
(here illustrated by electrical and heating infrastructures), the capacity needed for excess generation, storage, 
and energy transmission can be reduced.

3.B.3 Looking Ahead

Near-Medium Term (5–10 years)

Over the next several years, the current trends in electrification are expected to continue. Many of the 
individually engineered systems we design, build, and operate will increasingly rely on electricity as a primary 
mode of energy storage, transmission, and conversion at the point of application.

As a result, the near-medium-term outlook for electrification is strong. Much of the impact will increase the 
functionality of individual systems within key sectors. In the transportation sector, electrified vehicles (EVs) 
will become more prevalent and more capable with roughly one-third to one-half of all new car sales being 
electric cars within the next 10 years. Given the decade-long lifespan of a typical automobile, there will be a 
balance of both EV and fossil-fuel vehicles well into the following decade. Even without electrification replacing 



101

the internal combustion engine for primary propulsion, many of the ancillary loads in vehicles will become 
electrified, such as steering assist, braking, and HVAC [69]. Similar trends can be seen with other mobility 
systems such as aircraft as engine bleed air is gradually replaced by electrified actuation for subsystems [70]. 
The same will hold for the other sectors highlighted at the beginning of the chapter.

Within each sector, we foresee a focus on making electrified systems work well. As market penetration 
increases, new opportunities will arise. Using the EV example again, there will be an ability to network charging 
systems, power delivery systems, and vehicles to create a more efficient overall system. There have been 
many studies on various ways to accomplish this integration of sources, sinks, and storage for EVs and local 
grids [71, 72]. Considering current consumer preferences and legislation, there have not been enough EVs 
deployed to provide large-scale validation. Many prior studies rely on assumptions to perform simulation-
based optimization and decision-making. The next five to 10 years will see some of these assumptions 
validated, many of them overturned, and some new pathways emerge that were nearly impossible for the 
controls field to identify a priori.

The improvement of individual sectors due to increased electrification will expand beyond electrified mobility 
and include manufacturing (such as the prior steel mill example), as well as building systems, cloud computing 
infrastructure, and other stationary sectors. These elements will have increased ability to coordinate with 
primary production and storage systems such as PV, nuclear, wind, hydro, and fossil fuels in the near to mid-
term. One key to this will be the continuous evolution of the electric grid structure, including micro-grids, as 
the connective tissue enabling greater collaboration across sectors.

In its simplest form, an electric grid is a network. The use of the term “grid” refers to a complete infrastructure 
that encompasses power generation, transmission, and distribution. Distribution networks are larger in size in 
terms of the number of electrical points or buses as well as loads and metering devices, while transmission 
networks have more complicated topologies as they are often interconnected with other regional transmission 
networks to provide greater redundancy in power flows. Such interconnections also provide greater reliability 
in feeding distribution networks. Transmission networks must effectively manage both power generation and 
consumption as a power failure or spike in consumption in one area may result in adverse effects in another 
area of the network.

The current electric grid does not optimally accommodate renewable energy sources. Over the near-to-
medium term, power grids could resolve these shortcomings by utilizing advanced communication technology 
and information to optimally transmit and distribute electricity from suppliers to consumers. Examples of such 
advancements include: i) integrated two-way communication, ii) advanced sensing and actuation, iii) advanced 
power electronics and their control methods, iv) electricity markets, and v) improved interfaces and decision 
support to monitor and control the grid in the face of critical contingencies [73]. These functionalities will continue 
to evolve as existing technologies evolve and new technologies are developed. The type, configuration, and 
implementation of these technologies and the use of relevant information will also necessitate privacy and 
cybersecurity of the grid in every operational layer.

Clearly, the role of control scientists and engineers will be critical during this vital transition period to greater 
electrification. This is an excellent opportunity for the controls field to adopt a “big tent” philosophy incorporating 
theory, large-scale computation, and experimental implementation. Through this inclusive approach, our field 
will be able to impact the state of the world as we become more electrified.
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Long Term (> 10 years)

Control is poised to play a critical role in furthering electrification and driving meaningful change within and 
across many sectors of society, as shown in Figure 3.6. Being able to communicate across these various 
sectors and share energy as sources, sinks, and storage elements will enable a tremendous increase in 
efficiency and resiliency through appropriate management of our systems. The concept of interconnected 
networks of networks across different markets will need continued attention to bring to fruition. Examples 
include using buildings as virtual storage elements through electrified space conditioning to balance out 
variability in source generation due to renewables. Similarly, automotive systems could be used en masse as 
actual storage elements aggregating multiple individual vehicles to balance grid loads, stabilize grid frequency, 
and even shave peaks in generation.

This large-scale interconnectedness will require scalable network-based control design and verification 
tools that are resilient to anomalies, whether benign or malicious. Each sector network will have its own 
characteristics. For example, manufacturing systems have a very different set of energy and power profiles 
than buildings, and EV systems in China may be very different in usage patterns than those in Scandinavia. 
The power of the control engineer is the ability to understand each sector, formulate decision-making tools 
to manage the sector subsystems, and connect with other decision-making tools from related sectors. While 
there are several efforts underway that look at these large-scale networks in concept, there remains much to 
be done in the long term to deploy guarantees of performance and safety in practice. Meeting, and possibly 
influencing, regulations and policy will also be an important aspect to cross-sector operation.

3.B.4  Targets of Opportunity for Control Systems  
Scientists and Engineers

There are tremendous opportunities for control systems scientists and engineers to have an impact on our 
future electrified society. More electrified and smarter agricultural systems will feed a planet of 10 billion 
with increased efficiency. This includes smarter in-field agriculture as well as burgeoning vertical farming 
near urban areas. Similar cases can be made for construction with increased electrification and autonomy. 
The steelmaking example illustrates that even the most formidable frontiers of manufacturing are becoming 
accessible to electrical power. The entire domain of mobility, including air, land, and marine modes, will be 
transformed by electrification over the next decade [74]. The scope of electrified opportunities is sufficiently 
vast as to preclude detailed enumeration and restrict discussion to an illustrative example.

Here, we utilize two target opportunities, transportation and buildings, as examples of how our field is poised 
to lead impactful efforts. Buildings are a sink for a large amount of energy in society—up to 40% by many 
estimates [75]. Within building systems, the modes of energy use various functions: from space conditioning 
to lighting to computational systems and beyond. Similarly, transportation is a major consumer of energy 
at nearly 30%. Building systems, if aggregated, can be considered a network of energy nodes with a fixed 
topology. Likewise, vehicles are a network of energy nodes with a changing topology based on mobility. There 
are opportunities at scale for aggregating these two networks in a given region into a system of systems to 
provide greater flexibility and efficiency than individual building or vehicle usage could offer. Building systems 
can be used to create virtual energy sources through control of their electrical functions. By reducing usage 
from a baseline, we achieve the equivalent of adding a source.
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EV networks can also be used as aggregated storage, source, and sink networks to balance production by 
renewables or demand from other societal sectors. Indeed, energy could potentially be shuttled among buildings, 
vehicles, and the grid seamlessly. What are needed are modular and scalable decision-making strategies, 
including resiliency and contingency strategies, to enable the optimized utilization of these coordinated 
networks. In concept, this can be done with assumptions on building behavior, grid usage, production cycles, 
and vehicle operations. Indeed, many within our community have addressed these issues with varying degrees 
of practicality. Control systems is needed for implementation that firmly grounded in analytical understanding. 
Of course, this leadership must occur in concert with the market and policy considerations which can often 
overshadow the technological aspects. 

3.B.5 Methods

To date, there are many different tools and techniques that have been used to control electrified systems. Here, 
we will focus on examining the methods that seem likely to make a large impact in the future.

First and foremost is the idea of learning and data-driven methods to be introduced in Section 4.A. Since 
energy system infrastructure has long time constants and life cycles, many of the systems that will be used 
in the future already exist and there is ample opportunity to gather a large amount of historical data. Coupling 
vast amounts of data with increases in communication and computing capability allows many of the advanced 
algorithms in machine learning to be performed centrally as well as at the edge. Current ML algorithms, 
including multilayer deep learning algorithms, are capable of interpolating within their learned dataset to 
quickly make decisions such as distributed resource allocation within the network of networks, as described in 
Section 3.B.4. Moreover, emergent “foundational models” for ML offer greater potential to extrapolate outside 
of the parameters of learned datasets and handle anomalous edge cases better than previous algorithms. 
Learning and data-driven control, across networks of networks, will be key to successfully capturing the 
potential of electrification.

Along with the increase in connectivity across electrified sectors of society comes opportunities but also risks. 
The risk of information misuse and privacy concerns are key. Therefore, deploying the methods that will be 
introduced in Section 4.C—Resiliency, Security and Privacy—will be vital to achieving greater efficacy and 
efficiency with electricity. Cross-sector network-based approaches can exploit some of the resiliency-focused 
methods by explicitly trading off capabilities (e.g., sources) in one sector such as transportation for those 
(e.g., sinks) in another sector such as manufacturing. This ability to capture and exploit resiliency through the 
physical assets of a network requires appropriate algorithms to enable benefits. An interesting tradeoff that 
meshes controls with economics and public policy is the valuation of information from businesses versus that 
of individuals when integrating these networks of networks. Again, control should be a leader in this space and 
explore the possibilities alongside policymakers.

Finally, the methods of Architecture and Control introduced in Section 4.E will be vital. As described, a multi-
physics network of physical networks will emerge, all connected by communication and a resilient grid. Some 
type of multilevel hierarchical structure is likely to emerge either by an agglomeration of multiple smaller players 
or by some type of top-down set of standards. Within this structure, large-scale optimization—likely with data-
driven learning—will play a role at the higher aggregated levels. Lower levels will likely use a combination 
of existing model-based or data-driven methods, with communication up to higher levels. The co-design 
of communication, sensing, and control architecture along with the design of the physical networks (e.g., 
charging station placement and grid storage sizing and placement) will be an excellent opportunity for control 
to lead positive change.
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3.B.6 Conclusions

Electrification is currently accelerating across almost every sector of society. This trend is driven not only 
by the need for decarbonization but also by the promise of improved performance and productivity. Most 
industries have the potential to shift a large proportion of energy consumption to electricity. However, wholesale 
conversion to electrified systems presents many significant challenges, including the management of power 
capacity within realistic targets for infrastructure investment. Control technology will be vital in managing the 
rapid increase in demand on electricity infrastructure as various sectors progressively pursue electrification. 
Control technology will be needed in applying smart operation to electrical power grid components to minimize 
capacity needs for power generation, storage, and transmission. This increased performance can be realized 
over the mid-term for certain sectors, some faster than others. In the longer term, control technology will play 
a crucial role in sector coupling, which will further these same goals. We expect that in the more distant future 
(> 10 years), a smart coupled network of networks will provide services and benefits to the global community 
that cannot currently be enumerated. Because of these vast possibilities, there has never been a better time 
to be a controls engineer focused on electrification.

Recommendations

For young researchers: The continued electrification of society is a long-term megatrend that will 
influence all market sectors. One major technical challenge is the coordination of disparate energy 
sources, sinks, and storage systems that operate over multiple spatial and temporal scales. Research 
in control systems is needed to optimize the large-scale utilization and coordination of existing 
and future capabilities. Additionally, research is needed to co-design controlled operation of these 
systems with their construction and deployment. This is a broad and deep multidisciplinary control 
challenge that will push the limits of distributed decision-making, optimization, and computing over 
disparate networks in the face of uncertainty and potentially adversarial exogenous actors. The 
systems under consideration will have states and decision variables that number in the millions, all 
with tight operating constraints. Researchers just entering the control systems field are perfectly 
situated to have a long-term impact.

For funding agencies: The development and deployment of control systems that support societal 
electrification will be critical in meeting many of our long-term planetary decarbonization goals. The 
past several decades have seen significant investment in distributed decision-making over networks, 
of which electrified societal sectors can be a key application. To further our decarbonization 
endeavors, we will need a translational effort to move many of the algorithms and approaches 
that have been developed, with varying degrees of realism, into real-world practice. In addition to 
the necessary mathematical analysis, this translation should include incentives and policies that 
promote deployment. We should pursue both incremental and high-risk/high-reward strategies in 
parallel to rapidly determine what will work in practice. These funding efforts should be maintained 
over a significant period of time in order to address new challenges that emerge during deployment. 
Governmental investments in translational research will need to be coordinated with commercial 
investments to optimize the deployment timescale.
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Abstract The field of engineering biology (also referred to as biological engineering or synthetic biology) seeks 
to arrive at a better understanding of biological systems and to design components into biological circuits 
that can carry out useful functions. This section of the road map describes some of the opportunities for 
control theory to benefit engineering biology and articulates some unique challenges posed by this application 
area. We focus on engineering at the cellular and molecular level, highlighting potential areas of research 
at the intersections of the biological sciences and various fields of engineering. These areas of interest 
include industrial and environmental biotechnology, food and agriculture, health and medicine, and energy. 
Key challenges include multiscale, stochastic, and spatiotemporal modeling of biological systems; modeling 
and managing robustness and uncertainty; designing tools that better support composability, modularity, 
scalability, and interconnectivity; and designing more complex, multicellular systems. Emerging applications 
include metabolic engineering and industrial biotechnology, engineered living materials, personalized medicine, 
control of living neuronal cells, and environmental remediation and sustainable agriculture.

3.C.1 What Is Engineering Biology?

Engineering biology refers to the use of engineered genetic elements to implement a variety of operations. These 
operations range from environmental sensing and remediation to biochemical synthesis to understanding, 
detecting, and preventing disease. A typical workflow for engineering a biological system involves the design 
of a biological circuit (or metabolic pathway) to carry out a specific function, which can then be “compiled” into 
a set of DNA sequences that represent the various proteins and other molecules required for implementation 
(see, e.g., [76, 77]). DNA can be commercially synthesized and either transformed into living cells where the 
genetic program is executed or be implemented in cell-free environments that carry out the core processes of 
biology (e.g., transcription and translation) in a nonliving environment. One example of this workflow is shown 
in Figure 3.7.

Over the last 20 years, engineering biology has emerged as an exciting domain that leverages 
engineering tools to optimize the design of beneficial biological systems. Control theory has 
the potential to advance applications of engineering biology in a wide range of areas, including 
agriculture, healthcare, and energy.

3.C Engineering Biology

Neda Bagheri, Mustafa Khammash, Richard Murray
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Figure 3.7: Design flow for engineering biological circuits (from Niederholtmeyer and Sun et al, 2015 [77]).

As in other engineering disciplines, engineering biology involves iterations of design, implementation, and 
testing (referred to as the design-build-test-learn, or DBTL, cycle), including the use of modeling and analysis 
tools familiar to those in the field of control. Feedback plays a critical role in the operation of natural biological 
systems, but its use is still nascent in engineering biological systems. Engineering of biological systems can 
occur at a variety of different scales (from molecules to ecosystems) and can also be combined with non-
biological components, such as silicon-based computing. While much of the field of engineering biology is 
focused on providing useful devices and systems, tools from engineering biology can also be used to provide 
a better understanding of natural systems and predict emergent dynamics across scales.

The 2019 Engineering Biology Research Consortium (EBRC) Research Roadmap [78] (Figure 3.8) summarizes 
some of the applications of engineering biology that are being actively explored:

• Industrial Biotechnology focuses on the industrial use of engineering biology, including manufacturing 
of bio-based products, making sustainable manufacturing processes cost-competitive, accelerating 
innovation and discovery of new products and technologies, and generating products at scales 
necessary for economic viability.

• Environmental Biotechnology focuses on technologies to enable deployment of bioengineered 
systems on land, in air, in water, and across human landscapes for the purposes of remediation, 
natural resource management, environmental monitoring, and species management.

• Food and Agriculture focuses on tools that impact how we feed the Earth’s people and animals. 
Engineering biology provides unique means for supporting growing populations with more and 
different types of food, addressing changes to food security and demand, and reducing the impact  
of climate change and urban growth.

• Health and Medicine focuses on applications of engineering biology relevant to the well-being of 
human and animal populations. Applications of engineering biology in this sector focus on preventing 
and eradicating disease and supporting longevity and quality of life.

• Energy focuses on the application of engineering biology technologies to advance clean and 
affordable energy sources and to reduce overall energy consumption. Biology can be a source for 
renewable energy by providing biomass for electricity generation and for the production of highly 
energy-dense transportation biofuels. It can also be used to optimize processes to use less energy.
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Figure 3.8: EBRC Engineering Biology Road Map [78].

Advances in these application areas have realized in recent years through many new techniques, including the 
CRISPR/Cas9 system that facilitates genetic manipulations in a wide variety of organisms [79], the development 
of gene drives that allow the propagation of genetic changes through a population [80], and the rapid increases 
in capacity for gene sequencing and synthesis [81].

Engineering biology has many potential ethical, legal, and safety considerations, and these are active areas of 
discussion in the engineering biology community. The EBRC has developed a set of guiding ethical principles 
for the field to [82]: i) use engineering biology to benefit the world, ii) weigh benefits of research against 
potential harms, iii) incorporate justice into all aspects of engineering biology, iv) share research, v) protect 
the freedoms of individuals and researchers, and vi) support open communication between researchers and 
other stakeholders. These principles build on a well-established set of guidelines and regulations in various 
jurisdictions that have been established to allow the safe manipulation of living organisms in a manner that 
protects human health and the environment (see Chapter 2 in [83] for a review of the U.S. Coordinated 
Framework for the Regulation of Biotechnology).
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3.C.2 Contributions From Control to Engineering Biology

Several recent articles have surveyed the contributions of control theory to the field of engineering biology, 
including Del Vecchio et al. [84] (see Figure 3.9), Hsiao et al [85], and Khammash et al. [86]. As with other 
engineering domains, high-level feedback serves as an invaluable tool for providing robustness to uncertainty 
and designing closed-loop dynamics to match performance needs. It also serves as a mechanism for enhancing 
modularity by providing desired dynamics of a module or subsystem (which are relatively independent of the 
detailed dynamics of other modules it is connected with) and by mitigating the negative effects of host-cell 
resource sharing. Control-theoretic perspectives provide useful modeling, analysis, and design tools for a 
variety of applications.

Figure 3.9: A load driver device for engineering modularity in biological networks [87] (reprinted with permission). 

Biological systems are inherently noisy and highly variable from cell to cell and organism to organism. This 
presents a challenge in implementing biological controllers but also an opportunity to use these controllers 
to mitigate the effects of noise and variability. Stochastic modeling of the dynamics of biomolecular circuits 
makes use of a rich set of tools from random processes and stochastic simulation. An important difference 
from other disciplines is that Gaussian processes are often not a good fit for the underlying stochastic 
mechanisms. Stochastic simulations and reduced-order stochastic models have been developed that build on 
stochastic differential equations (chemical Langevin equation) and Kolmogorov-based techniques (chemical 
master equation). Feedback control mechanisms in cells can provide a path to attenuating and even exploiting 
noise, but the fact that the control components themselves are highly variable (and that accurate sensing 
mechanisms are in short supply) must be taken into account.
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One especially important use of feedback and control concepts is in understanding and minimizing the burden 
and loading (“retroactivity”) effects of engineered biological circuits in cells. By making use of feedback, it is 
possible to isolate upstream components from downstream loads, manage the use of cellular resources, and 
provide adaptive designs to modulate the expression of genetic elements depending on the resources available.

Another important concept in the construction of feedback control systems is the use of “antithetical” 
mechanisms for providing feedback signaling [88] (see Figure 3.10). These mechanisms have been shown to 
implement molecular integral feedback control that is “resistant” to cellular noise. The incorporation of this 
integral feedback endows the biomolecular system with the important property of robust perfect adaptation, 
enabling setpoint tracking and constant disturbance rejection that is robust to parameter and dynamic 
uncertainty.

Figure 3.10: Antithetic feedback [88].

A more recent approach to engineering biology is the combination of genetically controlled systems with 
computer-controlled systems. These systems combine the advantages of biomolecular sensing and actuation 
with the advantages of modern computation. Computer-controlled genetic systems can be used for rapid 
prototyping of designs, integrated “silicon-cell” devices, or various applications in personalized medicine (e.g., 
using biomolecular sensing and actuation coupled to MPC using a physiological model of the overall system).

Control techniques have also been useful in diagnostics and therapeutics for diseases and other physiological 
conditions, particularly in the context of personalized medicine (see also the related material in Section 2.B). 
Models of the pancreas, coupled with MPC have enabled accurate real-time prediction and management of 
glucose in patients with diabetes [89]. Optimal control has been applied to patient-specific pharmacokinetics 
and pharmacodynamics models to design strategies for the administration of drugs to manage chronic 
myeloid leukemia [90]. This complements the pioneering work that engineered biology facilitated in the design 
of chimeric antigen receptor (CAR) T-cell therapy for managing soluble tumors. Similarly, nascent spatial 
models of the solid tumor microenvironment are being developed to predict in vivo tumor growth and coupled 
vascular dynamics, providing an in-silico testbed to help uncover the rules that drive emergent dynamics 
and to evaluate the efficacy of therapeutic interventions before treating patients [91]. Large, high-resolution 
models (such as those used to characterize the microenvironment) can prove computationally expensive for 
optimization and control. Model reduction tools from control theory, in combination with machine learning, are 
being integrated to alleviate this burden. Despite great advances in prediction, there remains a rich space for 
traditional nonlinear ordinary differential equation (ODE) models to guide our understanding of the human body 
and serve as tools for hypothesis generation. Muldoon et al. trained such a model to uncover how immune 
cells activate and drive their own population dynamics [92].
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3.C.3  Challenges and Opportunities at the  
Intersection of Control and Biology

As illustrated in Figure 3.8, there are many opportunities for control to have a substantial impact on biological 
systems. These opportunities include achieving a better understanding of biological systems in nature and 
designing and implementing new circuits, pathways, and systems from biological components. They also 
include integrating engineered biological systems with other technologies, such as electronics, materials, 
and mechanical systems. These opportunities are enhanced by recent technological advances, especially the 
development of CRISPR-based technologies [79] and the increased ability to synthesize custom DNA [81].

Looking across these different prospects, there are a number of common challenges that must be overcome 
and that can lead to new insights and methods for control. In this section, we summarize some of these 
methodological challenges and some of the opportunities for using control in emerging engineering biology 
applications.

Modeling Stochasticity and Uncertainty In Biological Networks: A key feature of biological systems is the 
large amount of stochasticity and variability that is present over a wide range of scales [93, 94, 95]. Many of 
the tools developed in control theory for understanding stochasticity may need to be further developed to 
deal with highly non-Gaussian stochasticity (e.g., Poisson processes for molecular binding and multimodal 
distributional responses). Feedback provides a mechanism for reducing variability when desired, but it can also 
be used to tune the distributional response to exploit the ability of biology to maintain “bet-hedging” strategies 
that protect against large changes in the environment. So far, reasoning about the evolution of distributions 
of responses in these cases has been tackled using numerical approaches that are not necessarily tuned to 
design needs. Additional research is needed to provide useful mathematical frameworks and tools for analysis 
and design.

Multiscale and Multi-Physics Modeling of Biological Systems: Biological systems operate on a wide 
variety of spatial scales (from molecules to ecosystems) and time scales (from microseconds to centuries), 
and the interaction between these scales is both intricate and essential [96, 97]. Effective modeling, analysis, 
and design must consider biological, chemical, informational, and physical properties across several scales, 
with strong interactions between them. To engineer complex biological systems that rival the designs we see 
in other domains (aerospace, chemical processing, electronics, etc.), we may need mathematical frameworks 
that allow for different layers of abstraction in which these different aspects can be partially separated. While 
our experience from these other fields will be relevant, natural biological systems are integrated to such an 
extent that it is difficult to separate out these effects, which in turn limits our ability to effectively combine 
components and subsystems into large-scale, complex networks.

Spatial and Spatiotemporal Properties: A simplistic view of a biomolecular feedback system is that it is a 
set of chemical reactions that take place in a well-mixed environment. Many existing engineered biological 
systems make use of this simplifying assumption as a basis of operation. The distribution of biological functions 
across the spatial domain, and the coupling of spatial and temporal responses, are important avenues for 
future advances. Early applications might include decentralized control of well-mixed cell populations, but 
more advanced applications will involve spatiotemporal strategies that include transport, signaling, and vastly 
heterogeneous properties among engineered elements of a complex system.
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Robustness and Predictability: A key property of feedback systems is their ability to provide robustness 
by design as well as performance (fast response, small errors, etc.). A critical factor in biological systems 
is context dependence (resource sharing, noise, growth conditions, genetic context) and new methods are 
needed to overcome this for engineered biological circuits. Additional issues include new methods to avoid 
mutational escape and minimize the effects of burden (e.g., low copy number control). Many of these issues 
are unique to biological systems and hence new control paradigms may be required.

Better and Faster Biological Design Workflows: One of the major drivers of current results in engineering 
biology is the improvement in the DBTL cycle. Tools for rapid prototyping and testing have enabled increasingly 
fast design cycles as a means to iterate and explore the design space. As our systems get more complex, 
we must develop more sophisticated workflows that allow rapid development and deployment of working 
systems, enabled by modeling, simulation, and testing. The need for more automated and repeatable design 
workflows can be enabled by the use of tools from control and the perspectives provided by the control 
community.

Composability, Modularity, Scalability, Interconnectivity: In order to build biological systems that can 
operate in real-world environments, it will be necessary to create components and subsystems that can be 
combined and function as expected. Current biological components do not have this property: It is very difficult 
to get a circuit or pathway produced in one laboratory to function in another laboratory, and even harder to 
integrate a circuit or pathway produced by one group into a system being built by a different group without 
a substantial amount of rework. In other disciplines, feedback is an enabler for providing modular systems 
that provide desired dynamics in the face of uncertainty, including uncertainty in the other systems to which 
they are connected. It is likely that feedback will similarly provide one of the key tools to enable composition, 
modularity, scalability, and interconnection in engineering biology.

Design of More Complex Functionality: Current use of feedback and control in engineering biology is relatively 
rudimentary compared to the advanced control techniques that we see in other disciplines. Many engineered 
biological control systems consist of simple feedback loops with only a few elements. As we explore more 
complex biological applications of control, it will be necessary to develop more complex functionality that 
allows for filtering, estimation, prediction, adaptation, optimization, and other advanced functions. This will 
require substantively new approaches that utilize modular and programmable architectures for implementing 
complex functions.

Design and Control of Multi-Cellular Systems: To date, most of the work in engineering biology has looked at 
relatively simple systems in which a single species is engineered to perform a desired function. Nature makes 
it clear that multicellular systems are capable of a vast repertoire of functions. Tools from control theory can 
provide key insights into the interactions between different types of cells in a large system, as well as design 
methods that allow for the separation of functions between different cell types [98, 99]. In particular, principles 
from decentralized control can elucidate how a subpopulation of cells without a master decision-maker can 
coordinate and drive higher-level responses. The “systems engineering” of biological systems will eventually 
have to grapple with the types of problems that control practitioners in other disciplines face every day.

In addition to these broad challenges in control-oriented techniques, there are a number of emerging 
applications where biological control engineers can play a critical function.
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Metabolic Engineering and Industrial Biotechnology: Feedback control can provide new methods 
for regulating gene expression to optimize metabolic pathways that enable increased yield, are robust to 
substrate variations, and are capable of handling toxic intermediates. Such regulation of gene expression can 
be accomplished with external feedback loops on a bioreactor using process control techniques, but there 
are also opportunities to couple bioreactors with circuits at the genetic level. Applications range from high-
value chemicals to advanced biologics (e.g., using Chinese hamster ovary [CHO] cells to make biologics with 
feedback control to enhance yield).

Engineered Living Materials: Recent investments in developing engineered living materials have enabled 
materials to respond in diverse ways, including reacting to environmental stimuli and damage. Control will also 
be useful for regulating the function of soft devices that integrate biological materials, like muscle and nerve 
cells, with non-biological material. By carefully regulating developmental processes, control methods can be 
used to guide the engineering of new tissues and organs.

Personalized Medicine: There is increasing interest in using “designer cells” to produce or deliver therapeutics. 
For example, recent results by Krawczyk et al. [100] describe a bioelectronic interface that uses wireless-
powered electrical stimulation of cells to promote the release of insulin. Other examples included engineered 
microbes that can be used to sense and/or modulate conditions in the gut microbiology as well as in broader 
applications, such as tissue engineering. Better understanding of the microbiome and how it impacts the 
immune system and brain function is needed, and that will require a systems perspective. Similarly, new 
methods in stem cell differentiation may be able to make use of control systems to regulate differentiation.

Control of Living Neuronal Cells: Recent efforts in developing invasive and noninvasive technological 
solutions for the direct control of living brain cells provide a promising path for the contributions of control 
engineers. One recent revolutionary advance is the development of optogenetics [101], a technique that uses 
genetic modifications to enable the use of light (via fiberoptics) to both sense and actuate specifically targeted 
neurons. By genetically engineering organisms such as insects and mice, neurons can be modified to express 
light-sensitive ion-channels [101], allowing for the control of neuronal activities (e.g., turning a selected neuron 
on or off for the purpose of neuromodulation [102]). This approach allows for an increased understanding 
of neuroscience and potential therapeutic applications as well as pathways for controlling the behavior of 
(biological) neural networks.

Environmental Remediation and Sustainable Agriculture: Similar to the use of engineered microbes in 
the gut microbiome, engineered microbes in soils can be used for a variety of purposes. These include the 
detection and remediation of toxins as well as the enhancement of growth conditions for crops through the 
detection of soil conditions and the triggering of plant responses by the release of small molecules. The use 
of engineered microbes in soils will require circuits and pathways that carry out a desired function while being 
robust to potentially large environmental fluctuations (temperature, water content, pH, etc.). It will also require 
new means of ensuring the safety of open release (versus contained use) products [83]. These efforts are 
closely related to climate change mitigation objectives, as described in detail in Section 2.A.

Engineering biology presents many key challenges and opportunities for the control community as we continue 
to work in conjunction with biologists, bioengineers, and data scientists.
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Recommendations

For young researchers: With historic roots in aerospace, chemical, electrical, information, and 
mechanical engineering, control theory integrates skills across STEM disciplines to enable broad and 
impactful applications. This places control in an excellent position to make significant contributions 
to emerging areas in biology. More students and faculty need to get involved in engineering biology 
to ensure that the control community can inform this evolving field as it expands in the coming 
decade. New courses, collaborations, and ideas are needed to connect existing results and methods 
in control theory with new applications, as well as to expand control theory to encompass specialized 
methods for biological systems.

For funding agencies: Investments in engineering biology should be increased over the next decade 
to accelerate innovation and expand the scope of the bioeconomy, which is already recognized as 
an important area of focus for the global economy. The relevance of engineering biology to health, 
wealth, and the environment—and the critical role of control theory in designing large-scale systems 
that can operate in uncertain conditions—justify more investment in research that can engender 
meaningful advances.
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Abstract Recent advances in mechanisms and batteries have enabled the development of robots that can 
manipulate objects as well as drive, walk, and fly around their environments. Mobile manipulators, with arms 
and legs or wheels, can pick up packages and move them across the room or across town. Robots have the 
ability to operate in dangerous environments like construction sites, disaster areas, and even outer space. 
However, three overarching control challenges must be addressed for this intrepid new generation of robots 
to successfully accomplish useful tasks in the real world. First, real-world environments are dynamic and 
unstructured, unlike traditional manufacturing environments where operations are preplanned and repetitive. 
Thus, control strategies must promote resilience to unforeseen conditions and disturbances. Second, 
traditional robust control addresses structured uncertainties and is overly conservative in realistic domains. 
Given the large uncertainties that exist in real-world environments, closed loop-controlled systems must be 
able to operate in a provably correct manner. Third, robots must operate safely around humans and engender 
their trust. Robots made out of soft materials that move slowly are inherently safer, although potentially less 
accurate and productive than their hard and fast counterparts. The future will see multirobot systems deployed 
in complex environments, with distributed computation and communication to achieve their ultimate goals.

3.D.1 Introduction

Robots began to be introduced into manufacturing plants in the 1960s. They were able to perform repetitive 
tasks with increasing accuracy and precision, relieving human workers from dull and sometimes dangerous 
labor. With high power, robots could lift entire vehicles, and with high speed, they could pick and place small 
parts. However, these powerful and fast robots could not sense and react to their surroundings, so for most 
of the 20th century, robots were placed in cages to protect workers from unexpected encounters that could 
result in injury or death.

In the 21st century, robots are emerging from their cages and operating in the wider world. With the ability 
to sense their environment, they are mobile and are able to work with and alongside people. Advances in 
computing, communication, sensing, and power storage are accelerating this transformation.

Service robots, autonomous vehicles, UAVs, surgical robots, and field robots are operating in less structured 
environments while taking on more complex and safety-critical tasks ranging from everyday chores and 
societal applications to warfare to extraterrestrial exploration.

With major advancements in sensing and computing technologies, robots have an increased ability 
to perceive and reason about their environments. Control challenges include promoting resilience 
in unstructured and uncertain domains, proving correctness of closed-loop operations under large 
uncertainties, and ensuring safe operations around humans.

3.D Robots in the Real World

Dimos V. Dimarogonas, Dawn Tilbury, Karl H. Johansson, Tor Arne Johansen



115

For the purposes of this section, a robot is understood to have sensors to observe the surroundings and 
measure its position, as well as perception to attain an understanding of its environment. It is able to reason 
about its options, formulate decisions, then take actions to interact with its environment, including other robots. 
A simple robot would be a robotic vacuum cleaner, while a self-driving car is a much more complex example.

3.D.2 Enabling Technologies

Perception

Improved sensing and computing technologies have enabled great advances in perception and opened up 
new perspectives for control. Multimodal sensing, which integrates audio and video signals with laser scanning 
and haptic feedback, shows promise for further enhancing robot perception.

In relatively open outdoor environments, robots and vehicles can often localize themselves with the aid of global 
navigation satellite systems (GNSS). Nowadays, this can often provide centimeter-level absolute accuracy 
with real-time kinematics and differential correction services. However, GNSS services may be denied or 
degraded as a consequence of multipath signal obstruction, electromagnetic interference, or cyberattacks. 
While inertial navigation is commonly used to provide high-rate motion estimates and resilience to short-term 
GNSS degradation and outages, additional aiding sensors are needed when GNSS is denied for long periods 
of time. Local navigation aiding based on radio and acoustic waves is helpful, but it depends on infrastructure 
that must be installed.

The use of visual odometry and simultaneous localization and mapping (SLAM) methods based on imaging 
sensors (visual and infrared cameras, lidar, etc.) is a very active area of research for robotics and autonomous 
vehicles. These sensors can be used in unknown and unexplored environments that have sufficient visible 
features, without any supporting infrastructure. They also provide situational awareness through the detection, 
recognition, and tracking of features and objects in the environment, such as roads, landmarks, unmapped 
static, and dynamic obstacles. Such information is used for relative and absolute navigation aiding, collision 
avoidance, and autonomous control that can direct the robot toward features or objects of interest while 
exploring its environment. Perception of the environment can be incorporated into various spatiotemporal 
models, maps, grids, graphs, and 3D world representations—often called “digital twins.” This is the basis for 
perception-based control, in which sensors explore the unknown environment and simultaneously collect data 
for end-user needs. One key application is information-driven control, with adaptive sampling of spatiotemporal 
fields to detect hotspots with high concentrations of contamination or valuable resources.

While significant progress has been made in perception-based control over the last decade (e.g., [103, 104, 
105, 106]) and robots have been proven to perform better than humans in certain tasks and environments, 
it is also clear that humans have a holistic understanding of the world around us that we are not yet able to 
integrate into robotic world models. The human brain far exceeds a robot’s capability to integrate its perception 
with its model of the world. This leads to a limited understanding of risk, incomplete situational awareness, and 
less accurate predictions.

Thus, it is still rare to see full autonomy: Some level of human supervisory control, monitoring, or assistance is 
often needed. Machine learning techniques such as reinforcement learning and deep learning are increasing 
our ability to implement better perception-based control for robots and vehicles. One key remaining concern 
is the limited transparency of such methods and models, whereas important questions related to explainable 
AI and trusted AI remain relatively open.
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Manipulation

Over the last decade, the mainstream focus on robot manipulation has shifted toward soft robotics [107]. This 
concept seeks to overcome the inherent limitations of traditional rigid manipulators equipped with application-
oriented control algorithms (such as impedance controllers or inverse kinematics control laws) as well as 
the more recent flexible/compliant manipulators that employ variations of these algorithms to cope with 
extra-passive degrees of freedom. Soft hardware promotes safety in interactions, but it comes with its own 
limitations [108]. Advanced considerations, such as disturbance rejection and motion imitation, are directly 
impeded by hardware design.

Nevertheless, this has led to an increasing demand for advances in the limited interaction capabilities of 
current controllers for non-soft manipulators. Different control techniques focused on efficiency and robustness 
have been explored. These include transient controllers (such as barrier-based techniques and prescribed 
performance control), model-based controllers with enhanced disturbance rejection capabilities (such as 
robust nonlinear model predictive controllers [NMPCs] and adaptive controllers) and learning techniques to 
mimic the human motion for prescribed tasks (such as in learning from demonstration). These diverse research 
lines will result in controllers that are capable of performing increasingly delicate tasks with basic perception 
capabilities [109]. Efficient interaction with the environment, and with other human and/or robot agents, is 
expected to shake up our perspective on which applications are viable for technology maturity [110]. Instead 
of controllers for single robots substituting for human operators in mass production facilities or collaborating 
in limited tasks with conservative safety guarantees, control solutions for efficient human-robot collaboration 
should make robot manipulation become more accessible to the general public. This also applies to mobile 
manipulation, which introduces the additional challenge of dealing with the coupling between the mobile base 
and the robot manipulator, as well as the computation for extra degrees of freedom of the base [111].

Legged Robots

Legged robots have recently transitioned from the laboratory to real-world use cases. This is due in large part 
to the large number of commercial platforms for both quadrupedal and bipedal robots. With the increased 
availability and deployment of these robots comes multiple opportunities for the control community. From the 
modeling side, this includes hybrid systems models of walking. From a control perspective, the real-world 
deployment of legged robots requires robustness of these controllers to uncertain environments (e.g., different 
terrain types). Finally, perception must be added to the feedback loop to enable legged robots to reason about 
the world they move through. 

Unmanned Aerial Vehicles

Unmanned aerial systems (UASs) have matured significantly during the last decade and are now extensively 
used for a wide range of applications. While miniaturized rotary-wing and fixed-wing aircraft were dominant 
in the early days, unmanned multi-rotor aerial vehicles are most common today. Their popularity is due to 
their low cost and the simplicity of their operation for many applications such as aerial photography and 
infrastructure inspection. Unmanned fixed-wing aircraft still have much greater speed, range and endurance, 
and hybrid designs that combine vertically and horizontally mounted propellers are emerging in order to enable 
user-friendly vertical-take-off-and-landing (VTOL) capabilities while retaining the advantages of fixed-wing 
aircraft. UASs are still mostly controlled using a mix of manual remote control and automatic control with 
preplanned routes. The need for expert pilots is being gradually reduced, which makes UASs available to an 
increasing number of users. 
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Going beyond visual-line-of-sight (BVLOS) requires safe systems and procedures that limit the risk for collision 
and damage. This has impacts for regulation, air traffic control, certification of airworthiness, pilot competence, 
and the concepts of operation. While high levels of autonomy may be perceived as a risk by stakeholders 
today due to the technology’s relatively immature state, it also has the potential to be an efficient solution for 
ensuring a high level of safety. There is a need for extensive research on autonomy and related technologies to 
enable BVLOS flight in challenging and unfriendly environments, e.g., without satellite navigation dependency 
[112], in strong winds and turbulence, icy conditions, and darkness, while providing the necessary resilience 
to internal faults and unexpected external disturbances. 

The UAS industry also wants to extend beyond flying cameras and sensors (e.g., for mapping, surveillance, 
and inspection) to more heavy-duty tasks such as transportation (e.g., persons, medical supplies, and cargo) 
and manipulation (e.g., maintenance, repair, and construction) [113, 114]. Consequences of faults will increase, 
and research on accurate and resilient sensing, control, and autonomy will be more important than ever.

Digital Twins

For decades, simulations have been used to evaluate potential robotic solutions, and data has been 
gathered for use in control systems to make real-time decisions about following actuations. Advances in 
high-performance computing, high-speed networking, and high-volume and cloud data storage allow these 
simulations and data to be used in new ways to improve control of robotic and automation systems. Digital 
twins is a recent concept that encompasses multiple aspects of physical counterparts to help make decisions 
to improve operation outcomes.

The term digital twin has been used in many domains. Here we adopt the definition of [115] that a digital twin 
is some level of replica of a real thing, exists in the cyber world, has the purpose of impacting an aspect of the 
environment in which its real counterpart exists, incorporates models and subject-matter expertise, and relies 
on both models and data (historical and real-time) to achieve its purpose.

Massive amounts data collected from robots, whether in the real world or on the plant floor, can be stored 
instead of overwritten every sample time. This data can be used to build models of expected behavior. Real-
time streaming can be compared to past data. In a manufacturing plant, comparisons can be made to the 
same process from the same machine, the same process from a different machine in the same plant, or even 
a similar process at a different plant. These multiple dimensions of potential comparisons enable drifts and 
trends to be detected and potentially corrected.

Simulation models can be run in real time and compared to real-time data streaming from the physical system 
[116]. These simulation models can be built from first principles, using physics and chemistry, or they can be 
constructed using historical data. The output of a simulation model can be compared to real-time streaming 
data and be used to detect anomalies or faults that may occur. Real-time data can also be used to update the 
simulation models as drifts or small changes occur in the operating system.
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Future challenges in the use of these data-driven and digital twin approaches include:

i. Automation of the development and tuning of models to reduce the amount of time required by 
subject-matter experts to set up these systems

ii. Development of methods to separate natural and expected drifts in system processes (which should 
result in model updates) from anomalous or faulty behaviors (which should trigger an alert to the 
system operator)

iii. Improved methods for including confidence intervals in the predictions of simulation models, in order 
to incorporate the natural uncertainty inherent in physical systems

iv. Numerically tractable and accurate (i.e., with respect to preserved quantities and context) reduced-
order modeling and methods of composing the multi-physics and multiscale component models 
prevalent in digital twins

3.D.3 Challenges for Control

The high-level control challenges for robots in the real world are:

• Handling real-world data with unknown disturbances (perception and multimodal sensing)

• Provable correctness under uncertainty

• Trust and safety

Resilience, Reactivity, and Reconfigurability in Real-World Operations

As robots operate in novel environments, increased levels of resilience, reactivity, and reconfigurability are 
required at the control and planning levels and in the fusion thereof. Beyond the traditional robust control 
approaches, there needs to be approaches to model potential disturbances including discrete events as well 
as drastic environmental changes (e.g., sunshine to snowstorm or asphalt to mud). The uncertainty associated 
with these unknown environments and the propagation of that uncertainty through the robot control must be 
able to be quantified and manipulated so that appropriate control and planning decisions can be made.

Construction sites are semi-structured environments, and “smart construction” aims to automate them to the 
highest possible degree. This concept originates in flexible automation, in which a large variety of different 
goods are produced at a single manufacturing site through the on-demand reconfiguration of machines and 
robots. This idea is carried into the construction vertical where products typically have lot size of one (one-off 
production). While construction sites still rely on manual labor, the vision for the future is to leverage automation 
to speed up the production cycle and enhance quality while also reducing human risks, carbon emissions, and 
costs. Control challenges involve the integration of high-level planning and flexible, low-level control toward 
distributed solutions applicable to the domain in hand. Solutions will also need to address the heterogeneity 
of different construction operators in the overall system architecture.

Outer space, subterrain, and underwater domains are even less structured and uncertain. These 
environments are often remote and unfriendly for humans, so the use of robotic and autonomous systems 
is of great interest. Robots must be designed to survive and perform with limited power, communication, 
and navigation capabilities. In the underwater and subterrain domains, there may be a complete lack of  
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Figure 3.11: Heterogeneous multirobot coordination with humans-in-the-loop in extreme environments. Figure 
credited to NTNU AMOS/Stenberg.

infrastructure and services, and high levels of autonomy may be the only option. Research into perception, 
situational awareness, AI, and fault-tolerant control is therefore essential to achieve the resilient autonomy 
that is required by these environments, where the intervention of a human operator or assistant is impossible 
[117, 118]. 

Furthermore, all these domains call for hardened robotic systems with robust hardware and software, 
whether it is for planetary exploration, ocean science, subsea mining, or in-orbit satellite maintenance. 
Robotics makes these environments more available to us at a lower cost, and contribute to democratization 
of space and the oceans. In addition to research on the robotic systems themselves, research is also needed 
on their payloads, instrumentation, sampling systems, mechatronics, and interaction with robotic platforms 
(see Figure 3.11).

Provable Correctness Under Uncertainty

Given the large uncertainties associated with these diverse environments, as well as the critical nature of these 
operations, robots must be certified to be behave correctly. Traditional robust control methods can handle 
structured uncertainties but can result in overly conservative control approaches. Robotic systems must be 
designed and built to react and adapt appropriately under changing conditions. The uncertainties associated 
with the robot itself, its capabilities (including sensing and mobility), and constraints (including computation 
and power) must all be considered.

The limitations of the environment, including sensing, computation, and power constraints, must be taken 
into account. The time needed to compute a solution to the overall control problem is important to consider, 
as robots in the real world need to operate in real time. Power- and time-efficient algorithms and computation 
methods need to be developed.
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Recent advances in sensing, computation, and data management have enabled the development of smart 
systems, providing greater autonomy and flexibility. These emerging control systems motivate sophisticated 
control objectives which go beyond the standard goals) pursued in classical control theory (i.e., stability, 
invariance, and optimality). For instance, one sophisticated objective is to control connected autonomous 
vehicles merging at a traffic intersection while ensuring safety and fuel economy constraints. Safety is the 
primary objective here, and at the same time, there is a need for flexible cooperation between these systems 
and the users. The complexity of such control objectives call for automated and provably correct techniques 
to verify or synthesize controllers for the emerging applications of control systems. 

A promising methodology for addressing the above issues may be achieved through a careful integration of 
concepts from control theory and those of computer science, e.g. formal methods and assume-guarantee 
rules [119, 120]. Formal method approaches allow defining the tasks and objectives in an effective, real-time, 
and user-friendly way for dynamical systems under multiple complex constraints. For the past decade, formal 
languages such as linear temporal logic (LTL) [121] have been shown to be expressive enough to capture 
many important properties in various robotic scenarios. More recently, signal temporal logic (STL) [122], which 
induces quantitative features, has also been considered. Control barrier functions have been introduced as an 
extension of barrier certificates in order to provide probable safety [123]. 

Optimization can also be a powerful approach to achieve specified objectives and constraints in a systematic 
way. While progress has been made, current methods are restricted to tasks in fairly structured environments. 
More efforts are needed to develop control algorithms that can handle realistic problems in unstructured 
and dynamic environments. Further challenges to be addressed are scalability (increasing in numbers, 
heterogeneous, dynamic objects, and agents) and uncertainty (complex or unpredictable dynamics), which 
may require replanning and adaptation by robot systems in real time.

Trust and Safety With Humans Involved

The social applicability of robot operations—especially when it comes to daily life implementation—brings 
several new human considerations into the picture. These include hard constraints such as safety and security, 
as well as soft constraints such as comfort, trust, and acceptability.

Advances in sensing, computing, and actuation have enabled robots to operate more safely around humans, 
with appropriate control methods. Robots must be able to perceive their environments, including humans, 
and make reasonable predictions so that they can plan their own operations and paths without causing harm. 
Although much progress has been made in these areas, humans can be unpredictable and environments are 
dynamic. It remains a challenge to develop control strategies that ensure safe operations for human-robot 
interaction [124].

Humans and robots are expected to cooperate in many domains and modalities in the future. Some robots 
may be taught by humans how to perform specific tasks, such as assembly or cooking. Other robots may 
teach or help humans in such contexts as physical recovery from a stroke or even in an educational setting. 
Humans and robots may be teammates, working together to accomplish a common goal of searching a 
disaster area for victims or caring for patients in a hospital.

As robot hardware increases in functionality and perception and computing continues to improve, robots will be 
able to work together with humans and have the potential to help make our lives safer and more enriching.

Following the maturity of perception, localization, planning, and control functions as building blocks of 
autonomous driving, the focus of autonomous driving research in the 2020s has shifted toward system 
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reliability and safety [125]. Situational understanding involving prediction of human behavior and risk-aware 
planning to incorporate traffic behavior uncertainties are the two main aspects that enable safe and efficient 
human-machine interaction [126]. The multimodal nature of uncertainty in traffic has been an extensive area 
of research in risk-aware planning [127]. Approaches such as partially observable Markov decision processes 
(POMDPs), probabilistic reachable set computation, and robust invariant set computations are employed to 
address the safety in the presence of uncertainty problem [128]. These research directions ultimately contribute 
to a highly autonomous transportation system that promotes increased safety, improves urban access for 
people with disabilities, and reduces carbon emissions and the need for personal vehicle ownership through 
planned shared usage. At the same time, the need to expand these approaches toward larger-scale and 
distributed implementations remains an open challenge.

The design and deployment of multirobot systems (MRS) is a fundamental challenge, as individual robots 
typically have access to limited resources. In centralized approaches, the robot team is typically considered 
to be a composite robot system to which a single robot motion planning algorithm can be applied. Due to 
the high dimensionality of the multirobot state-space, centralized approaches tend to be computationally 
impractical when the number of robots increases. While significant efforts have been devoted in recent 
decades to the distributed control of multirobot systems [129, 130] there are a number of directions that need 
improvement. Distributed approaches, in which all the robots are homogeneous with respect to control and 
are completely autonomous in the decision-making process, are more promising for large-scale multirobot 
systems. Multirobot systems that work in dynamically changing environments are safety- and mission-critical. 
Failures are expensive, as repair of both hardware and actions in place is often difficult or even impossible. 

The importance of safety is even more evident when explicit or implicit interaction with humans takes place. To 
enable multirobot systems to safely handle more complex tasks, an effective framework is needed to induce 
what the team should be accomplishing as a global specification, and to produce low-level distributed control 
algorithms. Thus, heterogeneous multirobot system control in the presence of complex specifications will be 
a key research area in the future [131]. 

To realize the full potential of a MRS, a fundamental understanding of the interplay between sensing, 
communication, and execution in these systems is needed. In complex and dynamic environments, it may 
also be that some tasks are conflicting or even unachievable. In such cases, it is expected that the overall 
MRS will be able to reconfigure its plans according to that real-time environmental information in a way that 
the objectives for the whole group are maximally satisfied. Moreover, when the tasks are still too complex for 
the robots, coordination between humans and robots needs to be further explored.

Manufacturing 

Automation has been used in manufacturing for more than a century, with mass production, assembly lines 
and conveyors. Robots were introduced a half-century ago, greatly expanding the capabilities of machines. 
Automated manufacturing, including robotics, led to high volumes and low costs for high-quality production. 
In particular, automation can lead to highly repeatable operations with low variances. These highly automated 
systems often incorporated cages around robots and safety sensors to protect humans who worked in the 
factories from the powerful, high-speed motions of the machines. Although many of the most repetitive 
and dangerous operations were automated, human workers were still required for setup, maintenance, 
troubleshooting, and dexterous assembly. The vision of a fully autonomous “lights-out” factory remains 
futuristic.
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Recent trends in manufacturing are leading away from mass production and toward mass customization, in 
which many different models are produced in a single factory—or even personalized production, where each 
product coming off of the assembly line has been made for an individual consumer (“lot size of one”). These 
trends require advances in both the physical machines that can make different types of products as well as 
control and data methods that can coordinate production efficiently and maintain the low-cost advantages 
found in mass production [132].

There are opportunities to improve the efficiency, quality, and cost of production at every level in a traditional 
manufacturing control hierarchy [133]. The lowest level of the hierarchy includes controllers for individual 
machines, robots, conveyors, etc. in the plant. The next level up includes the coordination of all of these 
elements through a PLC (programmable logic controller). Although changing the G-code of a computer 
numerical control (CNC) machine or uploading a new robot program to a manipulator arm is straightforward, 
new control approaches are needed to enable flexibility at the next level up. It is currently difficult to make 
any changes in the control programs that synchronize the system via a PLC program and ensure that these 
changes result in a satisfactory solution. Currently, most high-volume production lines that produce multiple 
products are designed from the outset to produce a set of products, and reconfiguration to add a new product 
remains a challenge.

At the higher levels in the hierarchy, there are opportunities for control to address the monitoring and supervision 
of the production system. Predictive maintenance has the potential to increase the uptime of a factory and 
significantly reduce the costs of unscheduled downtime. The large amounts of data that are required to realize 
these solutions are becoming available, and methods that can leverage real-time and historical data from the 
same or multiple machines while including contextual factors and both human and artificial intelligence are 
beginning to show promise.

The move toward mass customization and personalized production will require rapid adaptation to shifting 
demands, as well as better coordination with customers, distributors, and suppliers. At all levels of the supply 
chain, there are major opportunities for estimation and control strategies, including predictive models, to 
enable more responsive, resilient, and reliable manufacturing systems. These will enable customers to get the 
products they need, when they need them, at a reasonable cost.
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Recommendations

For young researchers: Among the biggest challenges in real-world robotics are making robots 
effective, resilient, and safe. This is essential for us to accept robots among us and to realize the 
full potential of robotics in society. We recommend focusing on the higher levels of the control 
hierarchy, including perception, situational awareness, autonomy, AI, and the use of digital twins. We 
will also need interdisciplinary collaboration between scientists in robotics, computer science, other 
engineering disciplines, and social sciences such as ethics and safety.

For funding agencies: To realize the promise of robots operating in the real world’s unstructured, 
dynamic, and uncertain environments, fundamental research is needed to advance the frontiers 
of control. While traditional robust control guarantees performance within structured uncertainties, 
new frameworks of resilient and reactive control must be developed for unstructured and dynamic 
uncertainties. We need to create methods for real-time characterization and perception of the 
environment, along with control frameworks that can be proven to operate correctly under large, 
dynamic unknowns. Another critical thrust for research is the collaboration of humans and robots in 
these dynamic environments while ensuring safety and engendering the trust of human operators. 
Positive results will lead to improved productivity and efficiency. Short-term research can focus on 
semi-structured environments such as construction sites, manufacturing plants, and warehouses, 
while long-term efforts can address open environments alongside humans.
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Emerging Methodologies

Fruitful interaction between machine learning and data-driven control plays out on a range of 
scales—from quantum control and molecular dynamics to swarms of autonomous robots and global 
energy markets. To fully exploit the synergies between these two disciplines, we need to revisit the 
foundations of systems and control with a focus on the intersections between dynamics, scalability, 
learning, and architecture.

4.A Learning and Data-Driven Control

Anders Rantzer, Florian Dörfler, Na Li, Nikolai Matni, Lucy Y. Pao, Gireeja Ranade,  
Angela Schoellig, Claire J. Tomlin, Melanie Zeilinger

As we proceed further into the 21st century, societal needs and goals continue to evolve. Our underlying 
systems become ever more complex as well, necessitating new tools for analysis and synthesis that 
effectively utilize advancing technologies and address these high-level objectives. This chapter showcases 
key methodologies that are emerging in control systems. We have focused on five central concepts: i) 
learning, ii) safety, iii) resilience, iv) humans, and v) architectures. 

The first section focuses on the intersection between learning and data-driven control, with a specific 
emphasis on scalability and dynamics. The second section emphasizes the need for weaving in safety and 
its formal representations into control of autonomous systems. The third section concerns the resilience 
of CPS in the wake of cyberattacks, extreme weather, and other major disruptions. The fourth section 
puts humans at the center of the conversation and addresses technical challenges in the analysis and 
synthesis of interactions between control systems and humans in the emerging field of CPHS. 

Finally, the fifth section focuses on control architectures that seek to address how various systems and 
their components interconnect and interact to produce desirable societal-scale control systems.
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Abstract One of the major developments in control over the past decade—and one of the most important 
moving forward—is the interaction of machine learning and control systems. Learning-based components are 
used to process sensor data, represent uncertain behavior of systems in their environments, and enable decision-
making based on context and observed data. These methods have a long history in control, but technological 
and methodological advances in machine learning are engendering new opportunities and challenges. To take 
full advantage of these, we will need to revisit the theoretical foundations of learning and data-driven control. 
Moreover, successful applications will need to be analyzed for the efficient transfer of knowledge between the 
various branches of engineering and to the next generation of scholars. Real-world applications are highly 
diverse, ranging across scales from synthetic biology at the cellular level to the design of economic incentives 
in large energy networks. Therefore, this knowledge transfer will be interdisciplinary but activated by a common 
core of system theory. Several major research challenges should be addressed. The interplay between offline 
and online computation must be better understood. Theory and tools for physics-informed learning must be 
developed in a dynamic setting. We will need to verify learning-based solutions for safety-critical applications, 
build a better theoretical foundation for the exploration/exploitation tradeoff, and further examine the interaction 
of mechanism design and information design in economic contexts. Last but not least, we will need to develop 
a systematic theory for the role of system architecture in learning for control.

4.A.1 Introduction

One of the major developments is a growing intersection of machine learning and control systems. This is 
evidenced by the facts that learning-based components are used to process sensor data, represent uncertain 
behavior of systems in their environments, and enable decision-making based on context and observed 
data. These methods have a long history in control, but renewed interest has been sparked by a number of 
technological and methodological advances, including:

• Inexpensive and efficient sensors that simplify the collection of data

• Increasingly powerful processors supporting both online and offline computations

• High-bandwidth and low-latency communications that are approaching ubiquity 

• New machine learning algorithms enabling the efficient processing of huge datasets

• Open-source software and data generating higher-quality and more efficient solutions 
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Figure 4.1: Pushing the limits of systems performance in complex systems (e.g., large wind turbines) often 
involves repeated controller tuning for different mechanical and aerodynamical properties in an iterative design 
process. This is one important application where initial automatic controller tuning techniques are already 
beginning to make an impact, and where future developments in automatic controller tuning will make a big 
difference.

These developments are creating new opportunities in classical control contexts. They are also giving rise to 
entirely new challenges as data-driven feedback control is being deployed in a wide range of new settings. 
Many aspects of modeling and learning are irrelevant in static settings but are of crucial importance in the 
realm of feedback control. These elements are well-known in control engineering, but the limitations of current 
learning theory become apparent when we try to exploit recent machine learning algorithms in a feedback 
setting. Below, we cover some important issues to be addressed as we proceed toward a more complete 
systems theory for data-driven control. We will begin with near-term challenges and gradually advance to 
ultimate goals.

4.A.2 Autotuning

Autotuners for PID controllers have found widespread commercial use in the process industry since the 
1980s. The most common ones are based on a simple relay feedback experiment that provides enough input 
excitation to allow for the automatic estimation of essential system parameters. Based on these parameters, a 
controller can be tuned automatically. An important motivation for the use of autotuning in the process industry 
is the large number of control loops, which make manual tuning tedious and expensive.

It is useful to ask how these early ideas can be further developed. Certainly, there are many application areas 
where automatic tuning has the potential to improve efficiency and save tedious manual work. HVAC for 
buildings has already been identified as promising, given that it also involves many simple control loops of 
a similar type. More complex systems could also be of interest. Consider, for example, large mechanical 
structures like wind turbines, where structural and aerodynamical properties are intertwined with control 
systems. The design and optimization of modern wind turbines becomes an interactive process, illustrated 
in Figure 4.1, where the controller must be updated many times before a successful co-design can be found. 
Automatic tuning has the potential to speed up the design process and generate great savings. Another area is 
in automotive industry, where the demand for highly customized products creates a need for simple and rapid 
tuning of various control loops.
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4.A.3 Batch Learning

Batch learning, as opposed to incremental learning, means that algorithms run offline and do not interfere 
with the system during data collection. This simplifying setting is exploited in classical system identification 
as well as iterative learning control [1]. For large data sets, such methods need to be combined with modern 
machine learning tools for efficient computations. However, to ensure robust optimization for complex tasks in 
the presence of uncertainties, joint design of experiments and algorithms remains essential. Thus, well-known 
difficulties associated with closed-loop identification, colored noise, time-varying system parameters, and 
unmodeled dynamics create new challenges in combination with learning algorithms developed under more 
idealized conditions.

4.A.4 Extremum Seeking and Learning

In the field of adaptive and learning systems, we can also see many opportunities with extremum seeking 
[2]. With the explosion of interest in learning algorithms (for all sorts of purposes, including optimization 
and control), it should not be overlooked that extremum seeking is also a learning-based approach (in the 
minimalistic, most efficient sense of learning), a model-free approach, and a data-based approach.

Extremum seeking’s real-time performance, rigorous convergence guarantees, and convergence rate 
assignment capabilities represent what machine learning and reinforcement learning algorithms have yet to 
achieve. It is our hope that some of the researchers and students who are pursuing learning-based capabilities 
will take note of these opportunities, especially in terms of blending model-free learning and optimization with 
the model-based compensation of complex but physically grounded processes.

4.A.5 Off-Line vs. On-Line Computations

The trade-off between offline (design time) and online (run time) computations, which is central to reinforcement 
learning, has been extensively studied in the context of MPC. This is due to the transition from traditional 
applications in process control (with time constants of minutes or hours) to recent applications in automotive 
industry and power electronics that have much faster time constraints. The idea is simple and fundamental: 
online computations have obvious advantages, since planning and execution can be focused on the situation at 
hand and employ up-to-date sensor information from a variety of sources. This generally improves robustness 
to model errors and disturbances. However, for applications in which there is less time to gather and process 
information, we must increasingly rely on plans made offline. Another important reason for focusing on the 
distinctions between the two modes is the uncertainties that can occur in real time. These introduce a significant 
shift in the relative roles of the two computations, placing more emphasis on the latter rather than the former.

This raises interesting challenges for the development of new theory and methodology: 

• Representations of cost functions, control policies, and dynamics that provide efficient interfaces 
between online and offline computations

• Tailored real-time numerical methods with inherent robustness against time-varying computational 
constraints

• Systematic collection of training data

• Quantification of how data properties impact the final control performance

• Analysis of the tradeoff between simulation based training and experimental data
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4.A.6 Parametric vs. Non-Parametric Methods

The question of whether data-driven controllers should be based on a parameterized plant-model can be 
traced back to the early days of adaptive control. From an engineering perspective, this model can serve many 
purposes, especially if its parameters have clear interpretations. The plant-model could then play an important 
role in verification, stress testing, and fault diagnosis, and the acceleration of learning by incorporating a 
priori information. Furthermore, the model can enable the transfer of a learned policy from one system to 
another system with similar features. Most importantly, this model can then enable an analytical foundation for 
establishing stability and robustness guarantees. Creating models for such purposes—and, more generally, 
combining data-driven models with first-principles models for control—is a major challenge closely related to 
physics-informed machine learning.

4.A.7 Partially Observable and Controllable Systems

Most machine learning algorithms assume that essential variables can be measured. Similarly, most 
literature on system identification and adaptive control is focused on control variables that are accessible for 
manipulation. However, there are many applications where essential variables can neither be easily measured 
nor manipulated but where feedback control policies need to be designed anyway. Obvious examples are 
government decisions to fight a pandemic or to mitigate climate change, as well as the control of large-scale 
infrastructure systems or the deployment of cancer therapies inside a human body. Research efforts in this 
direction are currently being pursued in statistics and several application disciplines under the term of “causal 
inference.” However, the development of a theory for dynamic data-driven control under such circumstances 
remains an overarching challenge.

4.A.8	Verification	for	Safety-Critical	Applications

The verification of software for safety-critical applications was already a major engineering challenge and 
a multibillion-dollar industry before the introduction of machine learning components. The addition of such 
devices greatly complicates matters. Schematically speaking, the literature follows two parallel paths, one 
formal and one pragmatic. On the formal side, the main idea is that by severely restricting the set of allowable 
algorithms and simultaneously making strict assumptions about the system to be controlled, it is possible to 
prove safety and other properties (e.g., using so called control barrier functions). The challenge is to extend 
this paradigm to include components like neural networks. Most likely, this will only be possible if we are willing 
to restrict our attention to special classes, where verifiability is explicitly taken into account during the training 
process. Probabilistic, rather than deterministic, certificates for safety and performance could be the natural 
goal for analysis of safety-critical feedback loops.

4.A.9 Optimal Exploration-Exploitation

The role of excitation has long been recognized as an essential feature in adaptive control. The idea is that 
unless you explore all relevant input directions, you cannot keep your model up to date. Feedback based on 
incorrect models may deteriorate and cause several undesirable effects such as bursting [3], or even system 
instability. At the same time, excitation is costly and may itself have a negative impact on performance, so you 
don’t want too much. This has motivated the concept of dual control. In machine learning, the corresponding 
tradeoff is known as exploration versus exploitation. The idea is easy to understand at a qualitative level, but 
a fully quantitative theory is far from being available.
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To understand the role of exploration, a key consideration is how to quantify the current competence level of 
a controller based on the kind of training data that it has received. This includes revisiting experiment design 
techniques of system identification. Sample complexity may only be a coarse measure in this regard, since it 
is not just the number of samples but the “quality” of the samples that matters.

The real difficulties occur when exploration and exploitation are intertwined. Importantly, some states cannot 
be explored unless you first reach the relevant region of state-space. Hence, exploitation is very often a 
prerequisite for exploration. Exploitation, i.e., control, may often need to precede exploration, i.e., learning. The 
idea is simple to grasp qualitatively, but hard to quantify theoretically. One of the difficulties is that statistical 
analysis is complicated by highly nonlinear learning dynamics. Worst-case analysis inspired by robust control 
and adversarial learning is therefore a valuable complement.

4.A.10 Data-Driven Mechanism Design and Information Design

The control of large systems with many decision-makers has strong ties to economic theory. A good example 
is power networks, where price incentives are used as control variables. Other cases include recommendation 
algorithms and online advertising that interacts with feedback from humans. Hence, it natural to take advantage 
of relevant economic theory and tools for the purpose of control. Mechanism design is a branch of economic 
theory that explores how agents can achieve desirable social or economic outcomes given the constraints of 
incomplete information and individual self-interest. Similarly, information design studies how outcomes are 
influenced by information sharing. A concrete example is when traffic flow in a road network is influenced not 
only by tariffs but by designing the information shared with drivers. Theory and methodology for mechanism 
design and information design will be of foundational importance for future sustainable societies, with data-
driven methods filling the gaps where first-principle models are missing.

4.A.11 Learning Architectures to Support High Level Objectives

Consider two future autonomous system use cases: i) a bomb-defusing rover sent into an unfamiliar GPS- 
and communication-denied environment (e.g., a cave or mine), which is tasked with the objective of locating 
and defusing an improvised explosive device, and ii) an autonomous UAV competing in a racing competition. 
Both systems will make decisions based on inputs from a combination of simple sensing devices (such as 
inertial measurement units) and more complex ones (such as cameras). However, the extreme diversity in 
requirements, conceptually illustrated in Figure 4.2, highlights the need for a principled approach to navigate 
architectural tradeoffs. Two philosophically opposing approaches to designing suitable perception/action 
pipelines are: i) layered, and ii) end-to-end. The more familiar layered (or modular) approach is rooted in 
engineering best practices, designs different layers (perception, prediction, localization, planning, control) 
independently, and interconnects them via prespecified (rigid) protocols. While the benefits of such approaches 
are well-known, this approach limits interaction between layers to often ad-hoc specifications shared between 
teams, thus limiting end-to-end optimization. Hence, all protocols come with a cost. In contrast, the end-to-
end approach, classically favored by the deep reinforcement learning community, seeks to learn an optimized 
map directly from pixels (or other high-dimensional sensory inputs) to actions. Such approaches have the 
advantage of optimizing the full perception/action pipeline for a specific application and have led to impressive 
demonstrations—but the resulting systems are opaque, difficult to troubleshoot, and lack safety guarantees. 
Further, they often preclude prior knowledge from being incorporated into learning/design, leading to increased 
sample complexity and brittle algorithms.
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Figure 4.2: Learning architecture must reflect the fact that applications can have very different robustness and 
performance requirements depending on dynamics, environments, objectives, and constraints.

The two approaches above can be viewed as extreme points of a broader architectural design space, with 
the layered approach optimizing for interpretability, modularity, and arguably safety and robustness, and 
the end-to-end approach optimizing for performance and simplicity of implementation. A coherent theory 
of architecture should allow for a principled exploration of the entire design space. Many questions remain 
unanswered. For example: What algorithms can be connected? What are their input/output properties? How 
do errors propagate? It is a major challenge to define the architecture design space in such a way that tradeoffs 
of this kind can be analyzed in a structured and quantitative manner.

Recent years have seen promising first steps towards balancing the adaptability and performance of 
reinforcement learning with the safety and robustness of control. For example, Lyapunov and barrier constraints 
have found use as safety shields in reinforcement learning, while priors and regularizers rooted in model-based 
robust control have been used to advance model-free reinforcement learning. In this way, the machine learning 
and control communities are converging upon methods that explore intermediate architectures. These are 
important early efforts in addressing a bigger challenge: How to systematically build architectures that support 
safe and robust performance.
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Recommendations

For young researchers: The interface between learning and data-driven control is one of the most 
exciting and fast-moving areas of engineering right now, with remarkable opportunities to address 
societal and environmental needs. We recommend mastering the basic theoretical foundations before 
progressing into newly emerging spaces. Theory for feedback control and system identification has 
been developed over several decades and its underpinnings in mathematics, statistics, and computer 
science share common ground with optimization theory and machine learning. We also recommend 
getting deeply involved in a specific application area. It is often in the interaction between disciplines 
that the most exciting ideas arise. For example, the natural processes of learning and control in 
biology will likely remain an important source of inspiration for engineers in the years to come.

For funding agencies: Recent decades have seen phenomenal growth in AI and machine learning, 
with a wide variety of applications in image analysis, language processing, medicine, and beyond. 
However, most success stories so far have related to static problems. There remain many societal 
and environmental challenges that will require learning on faster timescales, where dynamics 
and feedback become dominant. Examples include dynamic networks for energy, water, traffic, 
communications, healthcare, and sustainable food production. This is the home ground for systems 
and control theory. However, the integration of learning and control is still in its infancy, and many 
fundamental questions remain unresolved. With the proper resources, these practices can offer great 
rewards that can be harvested in a secure and reliable manner for the benefit of society
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Abstract As intelligent systems are deployed in real-world settings, there is an increasing need to providing 
guarantees that these systems will not violate underlying safety constraints. For example, semiautonomous 
planes must fly within safety envelopes and robots must avoid collisions with environmental obstacles, other 
agents, and pedestrians. The failure to provide general, formal, and verifiable guarantees of safe behavior leads 
to ad-hoc solutions that are overly application-, domain-, and platform-specific. When edge cases are not 
considered, the results can be catastrophic: loss of public confidence and even the loss of human life. There is 
a pressing need to develop safety-critical control approaches that can undergird the design of any advanced 
control and autonomy feature. The real-world applications of such an approach range from autonomous cars 
and planes to advanced robotic and CPHS.

4.B.1 Introduction

We will focus on these three fundamental questions of safety:

• Safety-Critical Control: At the level of complex control systems—described by nonlinear models—
what are the underlying means to realize safe behaviors?

• Safety-Critical Autonomy: Complex autonomous systems instantiate layered architectures that 
combine planning, trajectory generation, and control. How do we guarantee safety at and across 
these layers?

• Safety-Critical Learning: Given systems with unknown components, insufficient models, or 
perception modules, how do we combine learning with safety-critical approaches?

Addressing these questions can lead to formulations of safety in systems with black-box components (e.g., 
machine learning modules) and the application of safety-critical approaches to safety-critical systems with 
humans-in-the-loop. These concepts, taken in total, lead to open questions and problems in safety-critical 
systems. In this section, we present key open problems building upon a solid foundation of concepts that have 
been verified and realized experimentally on a wide variety of systems (e.g., multirobot systems) [4].

Ensuring the safe behavior of intelligent and autonomous systems is critical to establishing trust 
and enabling widespread deployment. The formal representations of safety given by control theory 
provide a paradigm for synthesizing, testing, and guaranteeing safe behavior that can be put into 
practice in real-world systems.

4.B Safety-Critical Systems

Aaron D. Ames, Koushil Sreenath, Claire J. Tomlin, Paulo Tabuada, Mykel J. Kochenderfer
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4.B.2 Notions of Safety and Their Relation

Our future will increasingly be filled with autonomous systems—from autonomous cars to medical devices 
that carry out intricate operations with minimal human intervention. To enable such systems to operate around 
and even inside humans, we need a strict notion of safety. However, there is no single standard definition of 
safety; we thus explore a few key definitions of the concept and investigate the relation between them. Notions 
of safety will form the basis for understanding architectures for safety and, consequently, for the synthesis of 
safety-critical methods in adaptation and learning.

Deterministic

The notion of safety was first introduced in the context of program correctness [5] where safety requires 
that “bad” things do not happen. For dynamical systems, this corresponds to ensuring forward invariance of 
“good” regions in space [6]. That is, early definitions of safety [7] involved defining a safety region that was 
given by an inequality that carved out a region in state-space, like L = {x | l(x) ≥ 0}. Thus, safety is quantified via 
the zero super-level set of l(x). While it is easy to define such a safe region starting from safety constraints, it 
is far less obvious how to ensure or verify that a system with input constraints remains within the safe region. 
Put another way, it is very hard to find bounded control inputs to guarantee that a system stays within a given 
set and is thereby safe.

One way to address this problem is to compute the set of all initial states from which the system can evolve 
such that it never leaves L (visualized in Figure 4.3). This is done by ensuring that there always exists at least 
one control input at each point in time, despite any perturbations, to keep the state trajectory in L. The set of 
such initial conditions is defined as the viability kernel [8], S, which has its roots in controlled invariance and 
corresponding reachability [9]. While the viability kernel can provide a strict guarantee of safety, computing 
the viability kernel is computationally intensive. An alternative approach to safety is through the use of control 
barrier functions (CBFs) [10]. In this case, the zero super-level set of h(x) defines the safe set C = {x | h(x) ≥ 0} such 
that inside C there is an additional condition satisfied on the time-derivative, ḣ, along solutions of a control 
system. In particular, there exists a control input such that ḣ(x,u) ≥ −αh(x), for some positive α. This ensures 
that the state never leaves the safe set C. While finding a control barrier function is challenging, in most cases, 
a heuristic h(x) is chosen and an online optimization solved to find the control input u. The safe set C and its 
connection with h is illustrated in Figure 4.3.
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Figure 4.3: The notions of deterministic and probabilistic safety are illustrated. Deterministic: (left) illustration 
of the defined safety regions L,S,C (Figure adapted from [11]), and (right) the safe set C as the 0-superlevel 
set of a control barrier function h, and how the CBF condition ensures forward invariance of the safe set 
(Figure adapted from [12]). Probabilistic: (left) illustration of the evolution of a stochastic system, and (right) 
risk adverse notions of safety—the mean of h being positive does not capture the low probability events, while 
the Value at Risk (VaR) and the Conditional Value at Risk (CVaR) capture these risk-adverse scenarios (Figure 
adapted from [13]).

Probabilistic

In some cases, we may not require a strict guarantee of safety but rather require the safety guarantee to be 
satisfied with at least some probability p < 1. This condition may arise either because it is computationally 
easier or more realistic to make a probabilistic guarantee or because the inherent system dynamics or 
measurements are stochastic. The latter arises due to perturbation or uncertainty in the model or uncertain 
measurements for which a probabilistic model is available. One approach to probabilistic safety guarantees is 
through probabilistic safety barrier certificates [14]. In this case, given a desired confidence level p with which 
to ensure that the system state remains safe (i.e., stays within the safe set C), a chance constraint can be 
formulated as Pr{x 2 C} ≥ p. If the uncertainty can be modeled as a Gaussian process, then there exist explicit 
solutions to the chance constraint, and a feasible control input can be computed through a second-order cone 
optimization problem [15, 16].

Stochastic uncertainty can also be captured in the context of discrete time processes and, in this context, 
different notions of safety can be posed as they relate to risk [13]. In particular, given a safe set represented by 
a barrier function, h, there are multiple probabilistic interpretations of safety for a stochastic process. One could 
consider the mean of h and formalize ways in which to keep this mean positive—but this does not properly 
capture risk in a variety of settings, since there are potentially a large number of safety violations in this case. 
Controllers that enforce safety in this case are, therefore, risk-neutral. Taking inspiration from the finance and 
operational research communities, we can instead consider worst-case behaviors (in a distributional sense) 
and thereby generate risk-averse controllers. This can, be done, for example, via the Conditional Value at 
Risk (CVaR), which is a specific example of the more general notion of a coherent risk measure. As in the 
deterministic case, one can formulate CVaR notions of control barrier functions to ensure safety in a risk-
averse fashion, i.e., ensure the positivity of the CVaR and, therefore, ensure safety in the context of low-
probability events. There are still a wide range of challenges when it comes to guaranteeing probabilistic safety 
in real-world systems—a key example being understanding safety with respect to distributional shifts (e.g., 
due to changing weather conditions, time of day, and other factors that change dynamically).
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Temporal and Event-Based Notions of Safety

Beyond purely deterministic or stochastic formulations of safety, there are notions of safety that are temporal 
in nature or that change over time due to event-based constraints. Constraints of this form appear in human-
robot interaction [17]. For example, it may be desirable to ensure safety for some time interval, after which 
the safety constraints might change. Or, we may wish to ensure safety until a goal or event is reached, or to 
change controllers when an event is observed. These types of specifications can be captured in great detail 
through the use of temporal logic. Popular examples of specific temporal logics that are well-studied include 
linear temporal logic and signal temporal logic. Stochastic variants also exist, e.g., distributional temporal logic 
to capture complex probabilistic specifications. In all cases, safety can be encoded via the specifications, 
e.g., always staying in a safe region, or never reaching an unsafe region. Safety specifications can be coupled 
with additional constraints (e.g., that the system eventually reach a goal) and combined in a layered fashion—
always eventually reaching a goal while staying in a desired safe region. It should be noted that methods 
deployed in the set-based definitions of safety can often be translated to this setting, e.g., through the use 
of control barrier functions and specifications (or fragments thereof); see [18, 19, 20, 21] for a few examples 
of a much broader body of work. Finally, among the different ways of verifying and enforcing temporal logic 
specified safety, there are methods that abstract the continuous dynamics to a discrete representation that 
enable the verification of temporal logic specifications [22].

Societal Interpretations of Safety

While the preceding definitions of safety rely on regions of the state-space of a system, humans instead 
evaluate the safety of a system by tabulating statistics of failures and using percentages to quantify safety. 
For instance, in 2019, traveling by car was 99.989% safe [23] while traveling by airplane was 99.99986% safe 
[24]. In contrast, we were only 99.8% safe from heart disease, the leading cause of death [25]. However, the 
range of percentages can be quite large. For instance, for drinking water to be considered safe, the percentage 
of lead should be under 0.0000015%. An alternative measure is nines of safety [26], wherein 90%, 99%, and 
99.9% safe outcomes have one, two, and three nines of safety respectively. A 100% safe outcome has infinite 
nines of safety. The nines of safety can be captured mathematically through the formula −log₁₀(1 − p) with p 
being the probability of the safe outcome; see [26] for more details.

It is important to understand these societal interpretations and targets of safety in order to be able to reasonably 
deploy the associated methods and build public trust. For example, private transportation accounted for 
82.5% of annual transportation-related fatalities between 2000 and 2009, resulting in 36,849 deaths [27]. If 
autonomous systems achieve a similar level of safety, is this sufficient for establishing public trust? Or must 
autonomous systems reach the level of safety for commercial transportation (accounting for 14.8% of annual 
transportation-related fatalities, or 6,390 deaths in the same period)? Or must they reach an even higher level 
of safety? This has important consequences, not just in terms of the synthesis of safety-critical methods, but 
in terms of the regulations that can be created around the understanding gained from these approaches.

One way to address safety at a societal level is to create standards that capture safety features, provide 
concrete procedures for verifying these features, and promote trust in autonomous systems. This can be done 
in two ways: optimizing existing standards, and creating new standards. In the former case, mathematical 
representations of safety (such as those described above) can be used; an example of this can be found in [28] 
where CBFs were used to fulfill ISO/TS 15066 regulations while maximizing performance. Alternatively, new 
safety standards can be created to capture new needs. An example of this is the Airborne Collision Avoidance 
System X (ACAS X) [29], which has become an international standard. This standard was formed through 
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the use of notions of probabilistic safety coupled with the optimization of aircraft performance (encoded by 
Markov decision processes [MDPs] [30]), and was flight-tested extensively as part of the process. This is 
representative of the broader process of encoding safety via standards.

4.B.3 The Pillars of Safety

To quantify safety in complex systems, it is necessary to frame the ways in which safety plays a role in different 
contexts: at the level of control, within the broader autonomy stack, and when combined with learning. These 
different considerations form the foundation for the pillars of safety in complex systems.

Safety-Critical Control

At a fundamental level, enforcing safety in a provable fashion is best understood in the context of real-time 
control, since this is what will drive the actuation of a system into safe (or unsafe) regions. This includes 
both deterministic and probabilistic notions of safety for both continuous and discrete time systems. A 
variety of methods have been developed over the years for ensuring safe behavior on systems. This includes 
approaches from the robotics community, e.g., artificial potential fields [32]. The control community has also 
developed multiple methods to ensure safety, including forward and backward reachability set calculations 
[33], including Hamilton-Jacobi methods [34], optimization-based approaches where safety is enforced via 
cost functions and state constraints; reference governors that modify existing controllers to ensure safety 
[35]; and abstraction-based methods [36, 22]. In these settings, safety is framed as a forward set invariance 
problem (per the deterministic notion of safety), and controllers are synthesized via the calculated safe sets.

Figure 4.4: Illustration of a safety filter, wherein a nominal controller (that may result in unsafe behavior) is 
filtered to generate safe behavior. Figure adapted from [31].

To give a concrete example of safety-critical real-time control, consider a safe set defined as the zero super-
level set of a function h with corresponding safe set C = {x|h(x) ≥ 0}. 
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Figure 4.5: Graphic representation of the autonomy stack (adapted from [37]) where the lower level, i.e., the 
real-time control layer, is shown on the left, and the highest level, i.e., the decision-making layer, is shown on 
the right.

Per the discussion on deterministic notions of safety, the system is safe, i.e., the set C is forward invariant 
if there exists a control barrier function [10], i.e., for all x Ε C there exist control inputs u such that the CBF 
condition ḣ(x,u) ≥ −αh(x) is satisfied. This condition can be used to synthesize a safety filter [31] that takes a 
nominal controller ud(x) and modifies it in a minimally invasive fashion such that safety is guaranteed by solving 
the real-time optimization problem: argminu ku−ud(x)k2 subject to the constraint ḣ(x,u) ≥ −αh(x). In the case of an 
affine control system, this is an affine constraint and thus the result is a quadratic program that can be solved 
in less than a millisecond. The result, as illustrated in Figure 4.4, is that even if the nominal controller is unsafe, 
applying the safety filter results in safe behavior on the system. Importantly, this and other safety-critical 
control paradigms have a variety of open problems, both in the underlying theory (e.g., synthesizing CBFs, 
incorporating input constraints) and the practical instantiations (e.g., uncertainty in the underlying model, 
sensing, and the environment). For example, recent work has utilized Hamilton-Jacobi methods to synthesize 
CBFs that respect input constraints [11].

Safety-Critical Autonomy

Autonomous systems leverage autonomy stacks which operate across multiple levels to plan, sense, and 
act—from real-time controllers to planning and decision-making. This requires safety to be considered across 
multiple time scales and multiple modes, describing the evolution of the system and each time scale. To this 
end, we consider safety at the following levels:

Low Level: At this level, control laws directly interact with the physical world via real-time controllers. The 
physical world, in this context, is described by continuous-time (nonlinear) differential equations. As a result, 
safety-critical control methods can be applied as previously described. Direct interaction with the physical 
world via digital controllers leads to the practical implementation of these controllers which can be done via 
sampled data or event-triggered approaches. In a safety-critical context, special care must be taken to ensure 
that safety is not violated in the inter-sample or interevent intervals. Finally, this real-time layer must interface 
with the higher layers in the autonomy stack in a safety-critical fashion. For example, it may be desirable for 
the safety-critical controller to track specified reference signals from the trajectory planning layer (via ud). 
Certificates that these reference signals can be tracked must be provided to ensure feasibility.
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Middle Level: At this level, trajectories are generated that encode desired behavior in a dynamically feasible 
fashion. This is often posed as an optimization problem, with a cost function encoding the control objectives 
(and stability constraints), and the constraints imposing dynamics and, importantly, safety and input constraints. 
In its most general form, the result is a constrained nonlinear optimization problem. But to realize this in a 
computational fashion, a linear model is often leveraged (e.g., via sequential linearization). The result is an 
MPC that can be used to generate desired trajectories that are passed to the real-time control level. These 
are safe due to the enforcement of state constraints, and the use of low-level controllers ensures safety at the 
continuous dynamics level. The desired behavior is then obtained from the decision-making level.

High Level: Decision-making occurs at the highest level (with the slowest update rates). This is often achieved 
with discrete level representations, e.g., “grid world” abstractions of the system behavior. This has a long 
history in planning for navigation in robotic systems, from RRTs to probabilistic road maps. From a deterministic 
perspective, formal methods can be employed to ensure that complex specifications are achieved, as framed 
via temporal logic. In a stochastic setting, MDPs and variants thereof, e.g., POMDPs, can be used to quantify 
uncertainty present at the decision-making level (including uncertainty in sensing and perception modules). In 
all cases, the decision-making level dictates the ability of an autonomous system to achieve its overarching 
goals, subject to safety constraints. Safety, in this context, can be encoded at the specification level (e.g., 
always avoid certain regions in space) or via analogues of CBFs wherein safety is guaranteed in a probabilistic 
sense via risk adverse approaches, e.g., CVaR. The decisions made at this level are passed down the autonomy 
stack to guide mid-level, and ultimately low-level, system behavior.

Safety-Critical Learning

Given a safety-critical autonomy stack, there are unique challenges and requirements for learning in this 
context [38]. It is essential to understand the role of learning at each layer of the autonomy stack, i.e., the 
decision hierarchy as it relates to learning.

At the low level, i.e., the real-time control level, execution speed matters. Thus, one must balance the 
tradeoff between time-efficiency and model accuracy. This learning must be efficient to execute—often this is 
accomplished by learning “residual” terms that quantify the gap between a nominal model and the observed 
data. Learning this residual term enables fast adaptation when there are rapid changes in the environment. 
Importantly, and especially at this level, this can be done in a way that guarantees physical properties of the 
system. For example, in the context of safety-critical control, one can learn at the level of “certificates” for 
safety, e.g., CBFs, wherein the residual quantifying the gap between the expected model-based value of the 
CBF and the observed CBF is learned [39, 40]. This is a scalar quantity, and as such it requires a minimal 
number of iterations to learn. The learned quantity can also be deployed on hardware at fast loop rates. At 
this level, the state must also be estimated—this can be done via classic methods in control, but can also be 
achieved with learning when perception leads to state estimation, e.g., when using vision to estimate depth in 
the context of collision avoidance.

At the middle level, learning can be used to plan multi-objective and multistep tasks. Specifically, learning 
can be deployed at the trajectory generation level to achieve a variety of objectives over a time window. This 
can be done in a model-free fashion, e.g., via reinforcement learning, or in conjunction with model-based 
approaches, e.g., learning the residual in a dynamics model and then employing traditional optimization-based 
methods. At this level, learning can also be integrated with model-based control methods that operate over 
time horizons, e.g., MPC [41] and adaptive control [42]. Again, this involves learning the residual dynamics 
and/or system parameters and encoding uncertainty in these learned quantities into the constraints [43, 44, 
45, 46]. In all cases, by exploiting structure, safety-critical constraints can be added, and the result is the ability 
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to shield learning such that the output is safe. For example, safety can be guaranteed in reinforcement learning 
by viewing it as a discrete-time dynamical system and avoiding “bad” regions in space when the learning is 
occurring (e.g., via discrete-time control barrier functions). Analogously, if learning is used in conjunction with 
MPC, safety can be guaranteed via state constraints in the corresponding optimization problem.

At the high level, collecting data is expensive and time-consuming since it typically comes from information-
rich sensors, e.g., cameras and lidar. As a result, this level typically uses more abstract representations 
of sensed information. When using cameras and lidar, these are often obtained via neural networks (e.g., 
detecting pedestrians or classifying objects in an image). But not much is known about those components and 
how they contribute to a loss of safety. Therefore, the decision hierarchy can be leveraged, with the expensive 
(in terms of data and computation time) learning elements playing a role at the highest level, since this layer 
operates at the lowest frequency. Additionally, the faster elements of the autonomy stack can be utilized to 
keep the system stable and safe while the data-rich information sources are processed, e.g., via measurement 
robust CBFs [47]. Finally, it is at the highest level that probabilistic notions of safety can be deployed in 
conjunction with the learning process. For example, uncertainty due to learning from sensing can be encoded 
stochastically at the highest level via the representations described above, e.g., POMDPs wherein safety can 
be guaranteed in the context of covariant risk measures.

4.B.4 Guaranteeing Safety for Systems

The pillars of safety give us the means to synthesize safe behavior on systems. The corollary is also critical to 
understand: Given a system with unknown and black-box elements (e.g., machine learning components), how 
does one guarantee safety? The key is to apply safety-critical methods externally, thereby allowing a system 
to be robust failure, as when failures occur in the learning components.

Safe Deployment with Black-Box Elements

The ability to generate safe behaviors for systems, even in the more general context of complex autonomy 
stacks, naturally leads to methods for safely deploying systems with black-box elements. A specific example of 
this is shown in Figure 4.4 in the context of safety-critical control: a safety filter was constructed utilizing CBFs 
which took a nominal signal and modulated it to ensure safe behavior. Importantly, the nominal “controller” 
can be a black-box element, as no knowledge of this block is needed except for its output (ud). That is, this 
controller may be a machine learning component without any guarantees of correct (safe) behavior. But by 
applying the safety filter, safety can be guaranteed. Similar ideas can be applied throughout the autonomy 
stack via methods developed to achieve safety-critical autonomy. For example, by combining these methods 
with adaptive control, these ideas may be extended to the case when parametric uncertainties occur in real 
time. This illustrates a key paradigm of the safety-critical framework: the ability to guarantee safety in a system 
even in the presence of unknown and potentially malicious components.
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Figure 4.6: Diagram illustrating the generation of tests for safety that are filtered through safe controllers.

Testing and Evaluation of Unknown Components

The ability to generate safe behavior also gives us a way to test and evaluate (T&E) a given system for its ability 
to meet a set of specifications—ranging from safety (framed as forward set invariance) to general temporal 
logic specifications (e.g., reach-avoid), even in the presence of unknown components. There is a long history of 
verification, wherein tests evaluating properties can be synthesized via falsification [48] or reachability analysis 
[49]. Recent results focus on T&E to specifically establish safety. For example, control barrier functions can be 
used to encode signal temporal logic specifications [18]. As such, they can be used to monitor the satisfaction 
of these specifications and synthesize tests that maximally stress a system with regard to given specifications. 
For example, one can form a min-max game utilizing CBFs that induces a test that is minimally safe even when 
the controller attempts to maximize for safety [50] (as illustrated in Figure 4.6). Generalizing this methodology 
points to a critical application domain: leveraging safety-critical methods as monitors of system behavior as 
well as generators of tests that certify safety.

4.B.5 Safety for Human-in-the-Loop Systems

Safety becomes critical—a matter of life and death—when humans are in the loop. The role that humans 
play in CPHS is described further in Section 4.D. There are three levels at which humans interact with CPS: 
at the physiological level, in autonomous systems, and in population-wide networks. Safety is critical at all 
of these levels, but in different ways. For example, at the physiological level, safety must be considered in 
contexts in which humans are in direct contact with robotic systems (as with robotic assistive devices). Thus, 
this interaction must factor into the underlying safety-critical controllers as well as the trajectory and planning 
layers. Humans interacting with autonomous systems provides another example where the human might form 
the basis for the “desired” signal in a safety-critical controller that must be modulated to ensure safety; see 
[51]. Finally, at the population level, safety can be understood in the aggregate—as with large-scale power 
systems where safety is represented by systems operating within safe regions even under abnormal loads, or 
in the context of pandemics where safety-critical control can inform active intervention measures [52].

At all levels, the human’s perception of safety is essential and forms the basis for trust in the underlying 
system and its behaviors. That is, if the human perceives unsafe behavior even if it is not actually unsafe (e.g., 
aggressive breaking on an autonomous car), it can lead to distrust. Thus, establishing trust goes beyond purely 
mathematical representations of safety and formal guarantees thereof, and points to a notion of perceived 
safety that must include formal representations of safety. This leads to the legal and policy aspects of safety: 
What levels of certification are really needed? Too many regulations can delay deployment and increase costs, 
while too few can erode public trust.



154

4.B.6 Applications and Open Challenges

The application of safety-critical methods is far-reaching. It is arguably the primary technological bottleneck to 
the widespread deployment of (semi-)autonomy. The public must have confidence that systems are quantifiably 
safe before they can trust these systems. This is certainly true of traditional applications in which safety has 
long been central, like aerospace, automotive, and robotic systems. But with the rise of autonomous robotic 
systems that interact with humans on a daily basis—from autonomous cars to robots being deployed in a 
wide variety of work environments—the role of safety is more critical than ever. This is especially true given the 
inclusion of elements that are not fully explainable, e.g., machine learning components. Novel approaches to 
safety can extend to a myriad of applications, including the power grid, epidemiology, transportation systems, 
climate change, space exploration, and economics—in short, all of the applications, societal drivers, and 
technological trends described throughout this road map.

With the broad scope of application for safety-critical methods comes a wealth of open problems and 
challenges. Here we briefly highlight open problems in each of the key topics we have touched upon:

Notions of Safety: The notions of safety presented herein largely centered on set-theoretic notions. Expanding 
these ideas to more general safety considerations, including trust (especially where humans are involved) 
poses both theoretic challenges and opportunities.

Safety-Critical Control: These methods critically depend on estimates of the state—it is through the state that 
safety-critical quantities are calculated, e.g., the value of a CBF and the corresponding inequality constraints. 
When the state is estimated from learning modules (e.g., deep neural networks processing images and video, 
extracting features, and inferring human intent), it is essential to determine corresponding errors and their 
impact on safety.

Safety-Critical Autonomy: As ML-based methods move to end-to-end solutions by capturing existing 
hierarchies in autonomy stacks into abstract neural network layers, it becomes increasingly hard to guarantee 
safety at the intermediate levels of the stack. Ensuring safety guarantees at the decision-making level, the 
planner level, and at the control level will become harder when they are encompassed by a single end-to-end 
black-box neural network.

Safety-Critical Learning: Guaranteeing safety (or constraint satisfaction) for a system with a black-box ML-
based model is challenging. The technical challenges involve our inability to build mathematical frameworks 
for predictive models of the output of neural networks so as to provide guarantees on safety and correctness. 
This is especially prevalent in the “exploration (robustness) vs. exploitation (optimality)” tradeoff when safety 
is critical.

Safe Deployment: For systems that utilize ML-components, the domain shift between training and test 
datasets complicates the problem of safe deployment and makes even statistical or probabilistic estimates 
of failure challenging. Quantifying this, in conjunction with the use of model-based methods ensuring safe 
deployments, provides unique opportunities.
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Test and Evaluation: Synthesizing tests that evaluate the safety of complex systems, especially those that 
contain black-box modules including ML components, provides challenges that are distinct from the problem of 
safe behavior synthesis, e.g., understanding the role of composing environment models and system behavior. 
It may be easier to make guarantees about systems with ML components than about the ML component itself.

Safety for Humans-in-the-Loop: This leads to an expanded notion of safety through contact where humans 
physically interact systems. Additionally, due to the unknown dynamics of these interactions, leveraging ML 
has great potential—especially when fused with model-based approaches. Finally, we can quantify higher-level 
interactions: characterizing intent, human preferences, and trust, and leveraging these in layered architectures.

Recommendations

For young researchers: For over a century, understanding stability has been the primary objective 
of control. While the stability of systems will never cease to be a vital consideration, there is now 
a singular opportunity to go beyond stability. As systems become more complex, a wider range 
of properties must be certified. Arguably, safety is the next logical generalization. There are also 
properties that combine and extend stability and safety that can give control theory a broader 
repertoire of enabling capacities. In all of these cases, hardware and the physical world can guide 
the next generation of theory and be used to put this theory into practice.

For funding agencies: We have an important opportunity to establish the science of safety by 
approaching safety from a formal perspective. This field can benefit from the mathematical 
guarantees produced by control and CPS approaches. Moreover, it has the potential to inform many 
other disciplines. In machine learning, for example, data-driven methods can result in unexpected 
(and therefore unsafe) behavior—and safety-critical controllers could ensure safe deployment of 
algorithms in the real world. More generally, there are expansive interdisciplinary areas that could 
benefit from a formal approach to safety, including autonomous systems, assistive devices, synthetic 
biology, and space exploration.



156

Abstract Cyberattacks, climate change, and other extreme disruptions pose major threats for our complex 
large-scale physical infrastructures such as water, energy, and transportation systems. The rarity and variability 
of these events creates challenges for robust designs which operate conservatively over long periods of 
normality. In contrast, resilient CPS designs can allow these systems to maintain better nominal performance 
and safely operate during extreme events through real-time reconfiguration. Enabling resilience will require 
new methods of detecting, identifying, responding to and recovering from these disruptions. There are new 
opportunities for research that span system modeling and analysis, detection and identification, the design of 
safety-preserving methods, and reconfiguration and restoration.

4.C.1 Introduction

The term resilience is increasingly being discussed in the context of complex CPS within domains ranging 
from transportation and energy to ecology and biology. While resilience is often discussed alongside other 
properties of control systems such as robustness, reliability, and safety, it represents a distinct attribute. A 
system is robust if it can withstand perturbation without the need for adaptation. Robust systems result in 
conservative designs that can lead to reduced nominal performance. In contrast, a resilient system recovers in 
response to perturbation and restores operation quickly (with perhaps some degree of reduced functionality.) 
Resilience also often connotes perturbations that are severe, complex, and tantamount to a crisis. Large-
scale cyberattacks are one notable example, as are concerted physical attacks and extreme weather events. 
A combined risk of all of these anomalies, potentially pushing systems to extremis, motivates the need for 
resilience as a key property.

As systems become increasingly large-scale, the problems of ensuring resilience are much more complex 
than before. Today’s societal-scale infrastructures (e.g., transportation, energy, water) are spatially distributed 
and are composed of many intricate networked components and subsystems. To facilitate the widespread 
and cost-effective deployment of enabling technologies that can sense, communicate, compute, and actuate 
on a societal scale, it is necessary to leverage commodity equipment and shared resources. For example, 
smart building applications that are able to use an existing Wi-Fi network are far less expensive to deploy than 
systems that require a dedicated communication network. But the use of shared off-the-shelf technology poses 
significant risks due to the inability to introduce air gaps and its often-substandard robustness and security 

New complex CPS are being created to increase performance in mobility, energy, water, and other 
vital infrastructures. Designing these systems to be resilient to cyberattacks, extreme weather 
events, and other adverse events will enable infrastructures to quickly detect and recover from 
these disruptions.

4.C Resilient Cyber-Physical Systems

Dan Work, Carlos Canudas de Wit, Bruno Sinopoli
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properties. Additionally, the extensive use of data-driven methods and technologies (e.g., machine learning) to 
replace analytical and model-based design tools introduces risks relating to reliability and verification of safety 
properties. Finally, climate change increases the probability of catastrophic events that require response and 
adaptation.

These trends present open challenges for the design of tools that can reason about interdependence and 
vulnerabilities and create systems that are resilient to large classes of disruptions. Testing the properties of 
robustness and resilience at scale is its own challenge. As an example, today’s modeling approaches for large, 
open, societal-scale systems often lack the fidelity needed to serve as digital twins. At the same time, testing 
on real-world systems is often impossible, since they cannot be taken out of service for experimentation. 
These and other issues motivate the need for new approaches to unlock truly smart and resilient infrastructure 
systems.

4.C.2 Towards Resilience

The terms resilience and robustness have often been used interchangeably. A system is defined as robust 
if it can withstand a perturbation without the need for real-time adaptation. As a consequence, design for 
robustness needs to take potentially major disruptions into account and often results in conservative design 
that sacrifices performance. At the same time, implementation is easier, as it does not require the deployments 
of tools and algorithms to provide situational awareness and real-time reconfiguration. In contrast, a 
resilient system responds to perturbations that can be significant, even approaching a crisis mode, and is 
able to assess and identify the specific disruption in real-time. A resilient design can consequently be less 
conservative than a robust design, but that comes at the cost of increased complexity. The types of disruptions 
can be varied and severe, such as cyberattacks, natural disasters, and other unforeseen structural changes. 
Moreover, societal-scale infrastructure systems often operate in a complex legal and regulatory environment 
that can be community- and context-dependent. Because of the rarity and variability of potential disruptions, 
a robust approach to design can be undesirable, as the system will unnecessarily run in a conservative mode 
(and therefore with reduced performance) during very long periods of undisrupted operation. We argue that 
resilience, as defined above, is a more attractive property to pursue (notwithstanding the added design-time 
and run-time complexity) as it allows the system to run more efficiently during normal operation. For large-scale 
systems, like transportation and energy networks, this can translate to lower costs and adverse environmental 
impacts.

The attributes of a resilient system span design, detection, identification, response, and recovery, as shown 
in Figure 4.7. At each step, there are opportunities for new control approaches to enable resilience of large-
scale systems. We can design systems to enable performance and security. We can increase the ability to 
detect attacks and disruptions by leveraging knowledge of the system. We can identify and isolate malicious 
agents and faulty components. Based on the identification of the disturbance, we can respond by deploying 
conservative measures to protect safety. At the recovery step, we can deploy responses to restore functionality.
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Figure 4.7: Phases of Resilience.

4.C.3 Characterization of Disruptions

Disruptions come in many forms and have different causes, both natural and manmade. A key imperative 
will be to classify and categorize disruptions so that that responses can be designed to address classes of 
disruptions, rather than single forms. Achieving scaling properties will make these problems manageable. This 
is particularly crucial for attaining resilience against security attacks.

Methods to Measure / Quantify Resilience

Advances in the ability to measure and quantify resilience are needed. In its simplest form, if we managed 
to project functionality onto a single dimensional index, we could measure loss by integrating over time, as 
shown in Figure 4.8. It is more likely that the index will depend upon the specific application and that several 
indices may be defined for the same problem.

Approaches like sensitivity analysis may be relevant for systems in which appropriate models are available, 
e.g., to explore the consequences of individual component failures due to external disturbances. But as the 
number of heterogeneous components in a system grows, exhaustive exploration of the failure combinations to 
determine resilience properties becomes impractical, even in even modestly sized systems. Better approaches 
for exploring and quantifying resilience for large-scale systems are needed. Two key elements that will need to 
be accounted for in resilience analysis and design are cost and constraints. 

As for the first, it is obvious that it is easier to make a system more resilient with more resources, since greater 
redundancy can be built into it. Comparing different strategies will require some sort of normalization with 
respect to the use and cost of resources employed. With regard to the second, resilience will require certain 
properties to be guaranteed. Safety—as defined in a system theoretic manner as the ability to maintain all 
the relevant states within a subset of the state-space, called the safe set—is of paramount importance, in 
particular for human-centric systems.
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Figure 4.8: A typical resilience chart.
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4.C.4 Automated Decision-Making for Resilience

The operation and management of large-scale infrastructure systems offers multiple directions for enabling 
resilience. Many current systems (ranging from air traffic control to water treatment) depend heavily on humans-
in-the-loop to monitor day-to-day operations and handle disruptions when they occur. Given the rapid increase 
in system complexity on the horizon (e.g., vertical take-off and landing vehicles and UAV package delivery), 
human-in-the-loop management will reach a scalability bottleneck. The modeling of cyberattacks, the use 
of red-team/blue-team approaches, trade-offs with privacy, and overall connections with computer science-
centric cybersecurity methods are all worthy of exploration. Systems that can team with human decision-
makers, automate the detection and identification of threats, and reason about responses in ways that are 
explainable and verifiable provide directions for improving the system resilience of complex infrastructure 
systems.

The potential societal impact of solving these problems is immense. It is becoming apparent that critical 
infrastructure systems are sensitive to attacks and disruptions which could incur huge societal costs. 
Meanwhile, there is a risk that these issues will fall in between defined research disciplines unless a more holistic 
system perspective is taken. For example, there is a large scientific barrier between the control engineering 
and computer security research communities, and this needs to be surmounted in order to address resilience. 
Indeed, many cybersecurity solutions, based on encryption and authentication, are necessary to establish 
certain security properties.

However, many of these solutions are not currently adapted to large-scale physical systems with real-time 
constraints, feedback, or legacy devices with limited computational power. Furthermore, security solutions 
may increase overall system complexity such that safety verification is no longer feasible with today’s tools. 
Conversely, many control and safety engineers are not familiar with the current security threat landscape and 
with existing solutions. It is necessary to create interdisciplinary teams to overcome these obstacles.

4.C.5 Opportunities for Control

There are multiple opportunities to advance control for resilience of CPS.

Modeling and Analysis

The complexity and openness of societal-scale infrastructure systems, and the relative lack of sensing 
infrastructure, creates significant challenges for modeling and assessing the impacts disruptions to these 
systems prior to the occurrence of such a disruption. Today’s computational resources enable simulation of 
systems with far greater fidelity than in the past, but sources of uncertainty in the underlying systems models 
remain. Dynamics are often approximated, parameters are not fully characterized, and system boundaries are 
more challenging to identify. Digital twins, which have seen great success in well-defined physical systems, 
are more difficult to realize when human interaction results in fundamentally different system behaviors. When 
the response of individual people or large communities influences dynamics and introduces uncertainty, it 
is challenging to create meaningful digital twins with which generalizable experiments can be conducted. 
Interdependencies across other large-scale infrastructure systems reveal another promising opportunity for 
advancement in modeling and analysis. A systems-theoretic view and resulting control-oriented models will 
prove useful in the design of resilient CPS. One concrete opportunity is data-driven modeling, analysis, and 
control (seen as a broad generalization of system identification and adaptive control) that incorporates physical 
constraints and is capable of providing property guarantees.
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Detection and Identification

Several opportunities may arise from leveraging methodologies from control-oriented Fault Detection and 
Identification (FDI) and enriching them with techniques from machine learning and security. In the case of 
security attacks, novel methodologies are needed to deal with intelligent attackers who may be capable of 
defying passive detection techniques. Over the last decade, the control community has made tremendous 
progress in this area, but significant work remains for when reliable system models are missing.

Safety-Preserving Methods

In CPS, it is important to preserve certain properties—often related to safety—at most or all times. While this 
can be achieved for normal conditions via proper design of decision-making, it is more challenging to devise 
safety-preserving responses to detected anomalies. Novel methods (such as those inspired by Lyapunov 
analysis like barrier functions) and verification techniques can be used to devise algorithms capable of 
preserving safety in the face of anomalous system conditions. This becomes even more challenging when 
such methods cannot leverage reliable models and have to resort to the use of data-driven techniques. Both 
stochastic and deterministic methods are relevant, depending on how important it is to preserve the property 
at all times.

Reconfiguration and Restoration

Concepts from optimization and system architectures can be used to develop methods of reconfiguring 
systems after anomalies have been detected, identified, and isolated. Economic analysis can prove useful 
in determining the amount of resources to commit (which will inform the length of recovery and the level of 
desired functionality at the end of the process).

Recommendations

For young researchers: In large, complex CPS, resiliency is a desirable property that is distinct from 
robustness. Resiliency is required to mitigate the consequences of rare but severe disruptions such 
as major cyberattacks and extreme weather. Rather than simply maintaining performance, resilient 
systems identify, detect, isolate, respond to, and ultimately recover from these disruptions. Adding 
resilience will reduce costs and improve performance, but this will require new methods of enabling 
real-time adaptation of complex and critical systems.

For funding agencies: Society’s critical infrastructure systems are growing more complex and at the 
same time face more extreme disruptions. While robust systems maintain performance throughout 
minor contingencies, resilient systems are able to assess specific major disruptions and design 
specific responses in real time. Resilient design has posed many open questions in control. If these are 
addressed, critical systems can continue to support societal needs over the decades to come.
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Abstract With steady advances in CPS, the interaction between humans and technical systems becomes ever 
more complex and traditional boundaries between humans and technology are blurred. The emerging field of 
CPHS grapples with a range of new technical challenges for designing interactions between control systems 
and humans, as well as broader questions of social domains. The applications are highly diverse; examples 
include artificial pancreases, prosthetics, robotic assistance devices, human augmentation technologies, 
smart homes, autonomous cars, and smart infrastructures. One key research challenge is characterizing 
models of humans and how they adapt during interaction. This will take multidisciplinary efforts to derive 
computational human models for prediction and control. Depending on the application and interaction level, 
this may require physiological modeling, cognitive-behavioral modeling, and modeling of decision-making in 
communities. The involvement of human beings implies significant uncertainties in the prediction of systems 
and also necessitates strict safety requirements. One of the main challenges in human-centered control design 
is developing methods that are safe, robust to uncertainty, efficient, and capable of learning and adaptation. 
Trustworthiness, ethics, and liability are vital dimensions as well.

4.D.1 Taxonomies of CPHS

CPHS are spread over a multitude of highly diverse application domains from biomedical engineering via 
autonomous robotics to infrastructure systems. Thus, the field is highly cross-disciplinary and leads to many 
different options for categorization. Here, we briefly introduce two ways of classifying CPHS based on i) the 
interaction between the human and the CPS, and ii) the role of the human within the control loop. Each 
taxonomy is based on some simplification and the boundaries between the different categories are fluid. An 
illustration is proposed in Figure 4.9.

Cyber-physical-human systems (CPHS) is an emerging field with diverse applications in fields like 
in healthcare, logistics, production, and infrastructure systems, where new technical challenges 
toward the understanding and designing the interaction between control systems and humans 
are addressed. Important research questions concern the computational modeling of humans as 
a basis for model-based control, as well as the creation of control policies that are safe, robust, 
adaptive, and trustworthy.

4.D Cyber-Physical-Human Systems

Sandra Hirche, Aaron Ames, Tariq Samad, Angela Fontan, Françoise Lamnabhi-Lagarrigue



163

Figure 4.9: Taxonomies of CPHS. (a): Taxonomy based on the level of interaction between human and CPS 
and type of human modeling: from physiological to behavioral/cognitive and to population level. (b) to (e): 
Taxonomy based on the role of the human within the control loop architecture (Image source: [53]; reprinted 
with permission).

Categorization Based on the Interaction Between Human and CPS

The interaction between CPS and humans may occur at various levels: i) at the level of physiological signal 
interaction, ii) on an individual cognitive and behavioral level, and iii) on an aggregate population level. The 
type of interaction is also strongly related to the modeling frameworks for human behavior and decision-
making, from a micro (physiological, including neurons and organs, and cognitive/psychological) to a macro 
(interconnected individuals/community/networks) perspective.
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i. Physiological Interaction: Here, the CPS interact with the human on the level of bio-signals. 
That is, the controller utilizes sensed data from the human to make decisions. Bio-signals include 
bioelectrical activity in the brain, nerves, and muscles (e.g., EECs and EMGs), pulse, heart rate, 
galvanic skin response, respiration, and biochemical components such as the insulin in the blood. 
The CPS often augment the human body on a cell to organ level with the primary goal of achieving 
symbiosis between human and machine. Biomedical applications drive research in this area with the 
aim of providing affordable, personalized treatment of diseases (see also Section 2.B). Important 
applications include i) automated drug delivery, e.g., anesthesia control and artificial pancreases, ii) 
control of electroceuticals, e.g., deep brain stimulation, iii) wearable sensors and actuators, e.g., for 
spinal stimulation, and iv) smart robotic assistive devices, e.g., prostheses, brain machine interfaces, 
and general human augmentation. This last category overlaps with higher-level behavioral interactions 
in cases where interaction is achieved through the device in addition to directly sensed bio-signals 
from the human. See Figure 4.10a.

(a) Physiological interaction (b) Cognitive (behavioral) interaction

(c) Population-wide interaction

Figure 4.10: Selected applications associated with physiological, cognitive (behavioral), and population-wide 
interaction in CPHS. Image source: [54, 55, 56, 57, 58, 59, 60].
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ii. Cognitive (Behavioral) Interaction: In this setting, the human is considered to be a decision-
maker who interacts with the CPS in a cognitive fashion via behaviors. The interaction signal is then 
communicated through the device itself or measured via external sensors, e.g., haptics, gestures, 
language, or even emotional expressions. The main objective for control is to design CPS behaviors 
that allow intuitive interactions resulting in safe and appropriately performing systems. Key applications 
include i) human-robot collaboration in manufacturing and construction, ii) robotic rehabilitation and 
assistance, iii) autonomous and semi-autonomous vehicles, iv) the operation of complex engineering 
systems, e.g., process plants, and v) smart homes and ambient environments. See Figure 4.10b.

iii. Population-Wide Interaction: Here, the focus is on large-scale interactions between networked 
human populations and CPS. The general objective is to facilitate the reliable, resource-efficient, and 
sustainable operation of infrastructure systems, either via direct control measures (policies and rules) 
or by incentives (see also Sections 2.C and 2.D). Important applications include i) traffic management, 
ii) power and general public infrastructure systems like smart cities, iii) the Sharing Economy, iv) the 
management of large plants, and v) the control of infectious disease. See Figure 4.10c.

Taxonomy via Role in Control Loop Architecture

An alternative taxonomy is proposed in [53], where the classical control loop is taken as an architectural 
template and allocates the human in one or more of its elements. In the first category, the human is “in the 
plant” and represents part of the process. Application domains include biomedical applications as well as 
temperature control in human-inhabited buildings. The second category considers the human as the controlling 
entity or part of it. Examples include drivers of vehicles, remote operators of UAVs and robots, and operators 
of building management systems and manufacturing plants. The third category is human-machine control 
symbiosis, where the human plays both these roles. One example application is smart prosthetics. The fourth 
category involves the non-trivial interaction of multiple humans with each other and with CPS in multi-agent 
loops. Examples include air traffic control and smart grids.

General Challenges in CPHS

While these three CPHS thrusts have significant differences in modeling, analysis, control objectives, and 
design tools, they share common central challenges. For example, due to complexity and often limited access 
to measurements, human models are inherently highly uncertain. Despite this uncertainty, the role of the human 
in the system means that safety plays a particularly important role. This leads to a key challenge: understanding 
uncertainty and safety in the context of CPHS. This raises fundamental research challenges and opportunities 
for the control systems community for:

• Characterizing models of humans and how they adapt during interaction

• Developing control methods that are safe, efficient, robust to uncertainty, and that can learn and adapt

Considerations of ethics, liability, and trust must be also considered at design time.
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4.D.2 Computational Human Models for Prediction and Control

In acknowledging the impact of model-based control design, the modeling of human behavior becomes a vital 
aspect. But deriving control-oriented models of human behavior poses significant challenges. Here, we outline 
some of these challenges in the context of CPHS.

Generalizability vs. Specificity

All models—whether on the physiological level or on the cognitive-behavioral level—exhibit a high degree of 
uncertainty. There are significant limits on sensing, understanding behavior in long tails, and accounting for 
variability across individuals.

To address this uncertainly, learning-in-the-loop provides a promising research direction (see Section 4.A). 
However, in many applications, the strict safety requirements require a careful balance between robustness 
and flexibility in the modeling and learning process. To this end, the expression of model confidence plays 
an important role in actively modulating the learning process while guaranteeing safety. It is important to 
understand which parts of these models can be learned offline or be based on priors, and which parts need 
to be adapted online.

In general, the combination of classical and data-driven modeling approaches represents a promising route 
toward more accurate human behavior modeling in CPHS. In particular, the modeling of abstraction beyond 
classical ordinary differential equations becomes an interesting line of research (e.g., in terms of structures 
like symmetries). Such structures enable generalization—they can be used on data in the context of learning 
with abstract priors, while data can lead to the discovery of structures. Another challenge is quantifying these 
interactions via training data that is often sparse. This requires sample-efficient modeling approaches with 
sufficient robustness and generalization. Additionally, we need to account for behavioral changes over time—
both through adaptation and via user-stated preferences (e.g., preference-based learning) which must be 
compared against confidence in a given model.

Understanding this interplay and utilizing the proper choice of priors is an important challenge for the control 
community. The solution will require collaboration with human sciences and machine learning communities.

The different types of interaction motivate the need for adequate models of human behavior at different levels, 
i.e., from models of physiological aspects to models of individual human behavior to models of group behavior.

Modeling for Physiological Interaction

The representation of complex physiology implies a fundamental challenge regarding the multiscale nature 
of such models, from individual cells to whole organs (see also Section 3.C). Being central to the field of 
biomedical science, control-oriented physiological modeling requires a strong transdisciplinary approach. 
Apart from the complexity of the models, limited access to observables and difficulties in online measurements 
further complicate model identification. The development of techniques for dimensionality reduction and 
reduced-order modeling becomes important in facilitating control design. Furthermore, physiological time 
delay needs to be considered. Interestingly, physiological models, despite their principal commonalities, can 
be individual to each human. Examples include understanding of brain function based on the analysis of 
dynamical processes and the role of network structure (see also Section 2.B), as well as insulin metabolism 
for the artificial pancreas [61].
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Modeling for Individual Behavioral Interaction

The key challenge here is deriving computational models of human behavior dynamics and decision-making 
for system design and controller synthesis. This differs from other approaches, e.g., in psychology, where 
descriptive models dominate. In deriving computational models that describe the interaction between humans 
and CPS, there are no first-principle models to draw upon (as is the case for pure CPS). Additionally, these 
systems are highly nonlinear and nonstationary, e.g., they can be periodic in nature. Moreover, humans 
themselves are decision-making agents which adapt to autonomy—and this adaptation must be accounted for 
in the behavioral interactions. The applications of modeling behavioral interaction are broad: driver models for 
autonomous vehicle control in mixed traffic [62, 63], motor behavior of stroke patients for robotic rehabilitation 
(see also Section 3.D), passenger decision-making behavior in dynamic pricing for shared mobility on-demand 
services [64], and models for occupant behavior for comfort and energy efficiency in smart homes [65, 66, 
67]. Similarly numerous are the theories derived from such fields as human movement science, cognitive 
psychology, and behavioral economics.

For example, optimal feedback control has been established as one of the guiding principles for human 
sensorimotor strategies. Research efforts have focused on the identification of optimization criteria (see [68, 
69, 70]) as well as techniques to identify them based on data [71]. Other established theories are based 
on internal models [72, 73] and hierarchies of nested feedback loops, ranging from fast localized reflexes 
(proprioception) to motion generation (central pattern generators) to global long-term goal-setting. The latter 
can serve as a template for layered control architectures for control systems (see also Section 4.E).

High-level decision-making in humans has been captured, for example, in theories from behavioral economics 
in terms of Expected Utility [74, 75] and Prospect Theory [76, 77]. These models describe how humans choose 
among risky prospects. While the former considers the human a “rational” decision-maker, the latter allows 
for subjectivity and uncertainty in the decision-making process. Other relevant models include Bounded 
Rationality [78] and Decision Field Theory [79, 80] from cognitive psychology, and the Theory of Planned 
Behavior [81, 82] from social psychology.

Modeling for Population-Wide Interaction

Networks of interacting individuals represent the dominant modeling framework for modeling human behavior 
on a population or group level. Networked dynamical models are proposed to explain and understand the 
collective emergent behavior arising from the behavior of single individuals. Relevant applications include 
trade markets, biological networks, and infrastructure networks [83].

Another notable example is given by opinion dynamics and collective decision-making over social networks; 
that is, on networks of interacting individuals who exchange opinions and arrive at decisions as a community. 
The social ties and interactions among individuals are captured by a graph; state variables represent their 
opinions and a dynamical model describes the exchange and evolution of opinions over time. Several models 
have been proposed in the literature on opinion dynamics in the last five decades, such as for example the 
DeGroot model [84] and the Friedkin-Johnsen model [85] (see [86, 87, 88] for a review). 
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A further example concerns the modeling of epidemic spread, in which models of local disease dynamics are 
combined with a disease transmission network represented by a graph (see Section 2.A). More comprehensive 
discussions of social network dynamics in the context of CPHS are given by [89] (which draws attention 
to human decision-making mechanisms in social diffusion and innovation processes), and by [90] (which 
highlights the role of online platforms’ infrastructures on the dissemination of content and the spread of 
information). Particularly in the context of infrastructure systems and sharing economies, the interaction of 
groups of individuals with algorithms and platforms plays a key role. Markets and responses to incentives (and 
their influence on global convergence properties) are studied within the framework of smart cities, financial 
networks, and electric mobility and traffic networks. Examples include the design of interventions to reduce 
financial contagion [91], the design of policies for incentive-based transportation demand management [92, 
93, 94], and demand response in energy markets [95, 96].

4.D.3 Human-Centered Control Design

Human-centered control design for CPHS reveals novel challenges and opportunities for the systems and 
control community.

Safety and Trust

The safety-criticality of many CPHS application domains (many of which feature a high level of uncertainty) 
is one of the utmost challenges for control synthesis. Principled approaches are needed to strike the right 
balance between the required robustness of closed loop control systems to unmodeled uncertainties and the 
required adaptivity to individual dynamics. Online learning approaches within the closed loop hold promise 
for achieving the required level of personalization to improve user acceptance and usability. However, when it 
comes to learning approaches—especially for online and active learning within the loop—safety, convergence, 
and performance guarantees still represent a largely open research challenge (see Section 4.B). Here, 
certificate-based methods for safety and stability can be leveraged in a CPHS context via learning models of 
behavior interaction. In addition to safety (often defined as the system staying in a safe region of operation), 
trust also plays a vital role in user acceptance. An important interdisciplinary research question that requires 
input from behavioral psychology is: How can trust be enforced and modulated through control?

Architectures

A further control design challenge common to all three interaction classes is the spatial and temporal multiscale 
nature of the underlying models. As noted earlier in the context of modeling for behavioral interaction, this leads 
to notions of architectures that are layered and hierarchical. At each layer, different control methodologies 
are required. For example, at the highest layer—capturing human cognition and planning in the CPS—we 
can leverage discrete representation. We can thereby leverage formal methods, MDPs, POMDPs, and formal 
methods for achieving a given specification. At the middle layer—corresponding to trajectory representations 
of behaviors—we can utilize tools from optimization, including optimization-based model predictive controllers 
(MPC). Finally, at the lowest layer—encoding real-time feedback controllers—classical control methods that 
leverage real-time force interactions (e.g., Lyapunov-based controller synthesis) can be employed both for 
linear and nonlinear systems. In all cases and at all levels, models of the human at different timescales and 
representing different classes of behaviors can be used. This includes the use of data-driven approaches.
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Validation

Another important question is: How can we evaluate human-centered control designs? Closing the gap 
between theoretic instantiations and real-world implementations to validate CPHS is a tremendous challenge. 
We must go beyond traditional validation and verification (V&V) methods due to the human-in-the-loop and the 
resulting safety-critical consequences. Because of high interpersonal variability, it is rarely sufficient to perform 
experiments with only one human subject. Multiple subjects need to perform the testing in order to achieve 
empirical results of statistical significance. Particular care needs to be exercised in the choice and sequence 
of experiments and in the choice of subjects. This points to the importance of experimental design in the V&V 
of CPHS. Specifically, it reveals important opportunities in the domain of T&E. It also implies collaborative 
opportunities between the control community and the social sciences with the common goal of validating 
human-centered control designs.

Control for Interaction

A unique aspect of CPHS is the interaction between humans and cyber-physical components. A key challenge 
is comprehending the role of closed-loop feedback in this interaction, especially when these feedback 
loops take different forms and occur at different timescales. This requires leveraging an understanding of 
architectures, as described above, and the corresponding impact on associated feedback loops. For any 
interaction, at any layer of the architecture, the role of sensing and signals in the feedback loop must be 
quantified: How certain is the sensing, can the essential attributes of the system be sensed, and how are these 
signals utilized in the controller? Answers to these questions can vary depending on the timescale at hand. 
Crucially, one must account for a variety of ways in which the signals and resulting controllers can degrade via 
the interaction with humans, including time delays and rate-limited control. Signals quantifying the interaction 
can also serve as a basis for learning and data-driven methods, for which the above questions take on further 
significance. Learning from inaccurate signals will result in inaccurate learned quantities. Finally, at the control 
synthesis level utilizing interactive signals, quantifying the objectives and constraints must be paired with the 
type of interaction and the layer of the architecture for which it occurs. The challenges in this space sit at the 
core of CPHS: good controller synthesis requires good information about these interactions.

Ethics, Liability, Trustworthiness, and User Acceptance

Going beyond traditional applications associated with CPHS, we can consider the formulation of control 
systems that can inform policy-level decision-making. For example, we can consider the ethical implications 
of public policy—representing different policies as control inputs to a population-wide CPHS—and employ 
data-driven models to simulate the consequences of these policies (see Chapter 7 for a deeper examination of 
these questions). These considerations raise issues related to privacy; we must consider the privacy of human 
data and how we can learn under these privacy constraints (e.g., incorporating aspects of federated learning.) 
In addition, when considering the impact of CPHS on humans, it is essential to ensure fairness and avoid 
bias—thus expanding what is being guaranteed beyond traditional metrics. Other important issues include 
user acceptance, explainability, transparency, and trustworthiness. In the end, to enable the adaptation of 
new technologies that tightly couple with humans, all aspects of interaction must be considered in a way that 
ensures confidence in all components.
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4.D.4 Opportunities for Systems and Control

As illustrated throughout this section, there are numerous opportunities for the development of new control 
methods in the context of CPHS. Here we briefly summarize the key observations and the resulting open 
problems.

Modeling: At the core of controller development are the models used to synthesize these controllers. The 
uncertainty present in the human component of the system requires new paradigms in understanding the 
models of these systems. These can be understood from a hierarchical perspective via a layered architecture 
that operates at different timescales and utilizes different modeling techniques. At all levels, data-driven 
methods must be utilized in order to properly represent the uncertainty inherent in humans. These data-driven 
approaches can leverage novel forms of sensing, system identification, and machine learning. Special care 
must be given to the inherently nonlinear and nonstationary behaviors of humans, the difficulty in collecting 
data, and privacy and ethical considerations. In all cases, first-principle models can be combined with data-
driven approaches to create a complete picture of the human system and set the stage for the synthesis of 
controllers that utilize these models.

Controller Synthesis: CPHS models provide a basis for the synthesis of controllers. As with the models 
themselves, these controllers must be attuned to the layered nature of these systems. The specific control 
methodology will depend on the layer of the hierarchy and the nature of the human interactions occurring at 
that level. Additionally, due to the uncertainty present in the human component of CPHS, data-driven models 
must be incorporated into the controller synthesis—from offline model identification and learning to the use 
of real-time sensing in the loop. Safety is critical in the controller synthesis problem, potentially requiring a 
shift from stability being the primary objective. Additional considerations that are unique to CPHS include 
establishing trust, protecting privacy, and resolving ethical conflicts. Validation of synthesized controllers 
requires new paradigms in V&V and T&E that account for the human-centered nature of CPHS, including 
limited data, adaptation, the use of sufficient numbers of subjects, and the corresponding experimental design. 
In summary, CPHS share many of the overarching challenges common to next-generation control systems, 
while presenting unique risks and opportunities due to the central role of the human. CPHS have the potential 
to have a clear and demonstrable impact on quality of life at the personal and societal level.

Recommendations

For young researchers and funding agencies: Important research questions concern the 
development of adaptive, data-driven control approaches that are probably safe, robust to 
uncertainties, and attuned to trustworthiness, intuitiveness, and ethics. Important challenges in the 
biomedical and cognitive sciences include the derivation of computational human models that are 
suitable for online prediction and control.

The safe and seamless interaction of human and smart technologies represents a significant 
opportunity—and a formidable challenge. The concept of CPHS recognizes the fact that ultimate 
societal outcomes of future CPS technologies will depend on a deeper understanding of the interactions 
between CPS and humans. 



171

Abstract There is a growing awareness that architectural decisions play an important role in deploying control 
technologies in real-world societal systems. Virtually all contemporary engineering systems of moderate 
complexity (e.g., aviation, processor design, and autonomous vehicles) take a top-down, hierarchical, and 
layered approach to architectural design. However, today’s societal-scale systems (e.g., power grids, social 
networks, and policy) are the result of an evolutionary, bottom-up, and ad-hoc design—and this can result in 
unforeseen, mysterious, and at times catastrophic failures. The goal of this section is to promote the study of 
control as a control architecture and the development of an integrated, unifying framework of architecture. In 
this section, we point to methods that show particular promise in the study of control as a control architecture, 
including layered multi-rate controller design via timescale separation, intralayer actuation/sensing/
communication architecture and controller co-design, and the application of these concepts to redesign the 
power grid to integrate distributed renewable energy resources.

4.E.1 Introduction

In its broadest sense, the term architecture simply describes the structure of something. Our goal in this 
section is to identify design principles for successful architectures in the context of control systems, as well 
as to quantify the consequences of this control architecture along a variety of axes. To make the concept of 
control architecture accessible, we start with an example of a layered control architecture motivated by multi-
rate control. We then shift our focus from cross-layer to intralayer architecture design. Finally, we ground our 
discussion in the context of a crucial societal-scale system architecture design problem—upgrading the power 
grid. We argue that quantitative study of the role and design of architecture in complex systems is essential to 
creating sustainable infrastructures that support societal needs. Systems-level thinking in terms of layering, 
feedback, and abstraction is crucial to understanding control architecture at a societal scale. New tools will 
be required to deal with currently intractable problems, and control theory will be central in the development 
of this theory of architecture. While an integrated, unifying framework of architecture and of control as a 
control architecture remains a long-term objective, we point to some promising methods and opportunities for 
advancement.

Societal-scale control systems are composed of a wide variety of elements, such as sensors, 
actuators, computers, communication devices, algorithms, software, and human-machine 
interfaces. Control architecture describes how these components are connected and how they 
interact. The goal of this section is to promote the study of control as a control architecture and  
the development of an integrated, unifying framework of architecture.

4.E Control Architecture

Nikolai Matni, Na Li, John C. Doyle, Anders Rantzer, Marie Csete, Steven Low, Aaron D. Ames
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What Is Control Architecture, and Why Should We Care?

All of the societal systems discussed thus far are composed of interconnections of interacting elements, 
such as sensors, actuators, computers, communication devices, human-machine interfaces, humans, 
algorithms, and software. Control architecture describes how these system components are connected and 
how they interact. There is a growing awareness that architectural decisions play an important role in putting 
control technologies into real-world societal systems. While virtually all contemporary engineering systems of 
moderate complexity (e.g., aviation, processor design, autonomous vehicles, power grids) take a top-down 
hierarchical and layered approach to architecture design, many of today’s societal-scale systems (e.g., social 
networks and public policy) are the result of an evolutionary, bottom-up and ad-hoc design, which can result 
in unforeseen, mysterious, and at times catastrophic failures. Furthermore, due to socioeconomic constraints, 
changes to these systems are subject to constraints inherited from initial designs, as in the discussion below 
about upgrading the power grid. This example serves as a stark reminder of the importance of design principles 
for control architectures.

4.E.2 Layered Architectures

Layered architectures are the most familiar and ubiquitous design pattern in complex engineered systems (e.g., 
planning and reflex, guidance, navigation, control, and software and hardware) and are crucial in decomposing 
seemingly intractable problems into well-understood subproblems. Despite their prevalence, a quantitative 
theory of layered architecture for control systems remains elusive. Instead, we often rely on the intuition and 
experience of system designers to identify the abstractions and layers defining the control architecture for a 
given system. This subsection will introduce some of the key technical challenges that need to be overcome 
to develop such a theory. We will also outline plausible next steps. We begin with a motivating example to 
ground our discussion.

Model Predictive Control as a Multi-Rate Layered Architecture

Consider the following finite-horizon optimal control problem (OCP) with x(t) the system state, ξ a known 
initial condition, u(t) the control input, w(t) a process disturbance, C(x,u,t) an instantaneous cost encoding the 
(negative) utility of state-input pair (x,u) at time t, and CT (x) the terminal cost.

 minimizex(t),u(t)   ʃ T₀   C(x(t), u(t), t)dt + CT (x(T)) 
 subject to       ẋ(t) = f(x(t),u(t)) + w(t), x(0) = ξ,       (4.1)

A standard approach to solving the OCP (4.1) is via nonlinear model predictive control (NMPC).  
A typical NMPC loop consists of repeatedly solving OCP (4.1) every τ seconds assuming the nominal dynamics 
ẋ(t) = f(x(t),u(t)), with initial condition ξ set to the current system state, applying the computed control signal  
u(0 : τ), and then repeating. The implicit feedback introduced by the NMPC loop, via updating the initial 
condition, introduces robustness to the unmodeled disturbances w(t). While the OCP (4.1) is typically 
intractable to solve exactly, even under the assumption of nominal dynamics, good heuristics exist for finding 
an approximate solution. However, due to their computational complexity, these heuristics typically lead to the 
update time τ being unacceptably large for applications with fast dynamics such as robotics, power-system 
control, and aeronautics.
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One approach to resolving this difficulty is to recognize that the OCP (4.1) is in fact accomplishing two tasks 
at once. First, observe that the state trajectory x(t) is chosen to minimize a cost function that encodes some 
notion of practical utility (e.g., optimal path to a goal, throughput in a network or utility maximizing power 
flows), i.e., the solution to the OCP is planning an optimal state trajectory. Second, a control trajectory u(t) 
(or feedback policy u(x)) is computed such that the desired trajectory x(t) is realized subject to the perturbed 
system dynamics ẋ(t) = f(x(t),u(t)) + w(t), i.e., the solution to the OCP is also designing a feedback controller to 
track the optimal state trajectory. This observation suggests a natural decomposition of the NMPC problem into 
planning (trajectory generation) and tracking (feedback control) layers. Indeed, this is exactly the architecture 
proposed in the autonomy stack shown in Figure 4.5 of Section 4.B.1

A typical approach to implementing this layered architecture is to abstract the nonlinear dynamics of the  
true system, and replace them with simplified dynamics in the planning layer. For example, suppose that  
the dynamics ẋ(t) = f(x(t),u(t)) arise from a mechanical system described by double integrator dynamics  
 ̈q(t) = F(q(t),q̇(t),u(t)), where q and q̇ are generalized coordinates and velocities, respectively. Then, a 
reasonable approach would be to approximate the system dynamics as a single integrator at the planning 
layer, resulting in the planning problem (4.2) which we observe is linear, and hence tractable to solve quickly, 
thus reducing the update time τ. Furthermore, given a reference trajectory (r(t),ṙ(t) = v(t)), standard tools from 
nonlinear control can now be used to design a feedback controller that ensures that x(t)  r(t). For example,  
a proportional derivative (PD) controller of the form u(x(t)) = P(x(t) − r(t)) + D(ẋ(t) − ṙ(t)) could be designed using 
Lyapunov techniques to ensure the desired convergence of the system state x(t) to the computed reference 
trajectory r(t). Crucially, this feedback layer controller is simple enough to be operated in real time. The resulting 
layered architecture is illustrated in Figure 4.11.

 minimizer(t),v(t)   ʃ T₀   C(r(t), v(t), t)dt + CT (r(T)) 
 subject to       ṙ(t) = v(t), r(0) = ξ, (4.2)

Figure 4.11: A layered architecture exploiting timescale separation to minimize approximately solve the OCP 
(4.1).

1  We note here the use of the term level in place of the term layer in Section 4.B. This inconsistency highlights 
the need for a unified theory and language for discussing control architectures.

Planning (slow)
minimizer(t),v(t)

Z T

0

C(r(t), v(t), t)dt+ CT (r(T ))

subject to ṙ(t) = v(t), r(0) = ⇠,

protocol: r(t)

Tracking (fast)

u(x(t)) = P (x(t) r(t)) +D(ẋ(t) ṙ(t))

ẋ(t) = f(x(t), u(t))



174

Challenges and Opportunities

This simple and hopefully familiar example illustrates many of the fundamental trade-offs inherent to layered 
architecture design. We will next attempt to generalize and formalize these concepts and highlight opportunities 
for their quantitative study. We begin by highlighting the advantages of the layered approach.

• Modular: By introducing a reference trajectory as a protocol between the tracking and planning layers, 
we modularize the controller into layers with well-defined and interpretable roles. This, in turn, allows for 
adjustments to be made to the planning layer without changing the tracking layer, and vice versa. This 
notion of modularity, achieved through an hourglass design pattern defined by layering and protocols 
(see Figure 4.12), is ubiquitous across complex engineered systems and extends well beyond planning 
and control to the full decision/control/software/hardware stack; see [97, Ch. 15] for a more extensive 
discussion of hourglasses and bowties (defined later in the section).

• Tractable: While the original OCP (4.1) is difficult to solve, the planning layer problem (4.2) admits an 
analytic solution, and the feedback layer PD controller can be easily computed in real time. Similarly, 
decomposing complex engineering design tasks into modular and interpretable layers allows for the 
global problem to be tackled via nearly independent tractable subproblems.

• Multi-Rate Control: The original OCP (4.1) naturally decomposes across two control rates: a slower 
rate, at which the reference trajectory r(t : t+τ) is updated, and a faster rate, at which the actual control 
action u(t) is updated. While this timescale separation is not exploited in the NMPC approach, it is 
heavily exploited in the layered approach. More generally, timescale separation is widely exploited 
across system architecture design.

Of course, the reader should be suspicious of what is lost in imposing the layered architecture proposed 
above on the controller structure, as we have made no rigorous justification for our choices. We next list some 
possible disadvantages to the layered approach.

• Abstraction and Layering Is Currently an Art: In the above example, we made two seemingly arbitrary 
design decisions: i) we decided that there should be two layers, one for planning (trajectory generation) 
and one for tracking (feedback control), and ii) we used single-integrator linear dynamics in the planning 
problem (4.2). While experience suggests that i) this is an appropriate layered architecture for the above 
example, and ii) that single-integrator dynamics are useful for generating trajectories for systems with 
dynamics arising from mechanical systems, no rigorous theory justifying our choice exists. The role of 
experience, intuition, and artful choices in system architecture design becomes even more prominent 
as the complexity of the system grows.

• Infeasible Reference Trajectories: By introducing simplified dynamics in the trajectory generation 
problem (4.2), we can no longer guarantee that the resulting reference trajectory r(t) can be tracked by the 
true system dynamics ẋ(t) = f(x(t),u(t)). This could have detrimental effects on safety and performance, in 
addition to running the risk of saturating actuators. More generally, the abstractions and simplifications 
used to define layers and protocols can lead to cascading errors up and down a layered architecture. 
This, in turn, can have catastrophic consequences on performance, robustness, and safety.

• Suboptimal Performance: By decoupling the design of the trajectory generation and feedback control 
components of the system, we restrict the feasible space of control actions our system can take. This 
invariably leads to a loss in performance.
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However, despite these potentially significant drawbacks, layered architectures are ubiquitous across complex 
engineered systems. This suggests that the trade-off between the advantages and disadvantages favors the 
use of layering in an overwhelming majority of applications. Our goal as a research community should be to 
understand why and, in doing so, develop a systematic method for designing such layered architectures. We 
outline below some research opportunities towards meeting this goal.

• Layering as Optimization Decomposition for Dynamical Systems: A principled approach to 
deriving layered architectures based on optimization decomposition is introduced in [98]. The 
authors are motivated by steady-state resource allocation across the protocol stack of networked 
communication networks and argue that Lagrange multipliers associated with resource constraints are 
natural protocols for coordination across the resulting layered architectures. While many of the insights 
and approaches from [98] can be applied to general optimization problems (including optimal control 
problems), a comprehensive theory of layering as optimization decomposition for dynamical systems 
is lacking. This presents an exciting opportunity for future research. Possible paths forward include 
explicitly leveraging timescale separation (e.g., formalized via perturbation theory) to define layers and 
identifying the dynamical system analog of the resource constraint/Lagrange multiplier definition of 
layering suggested in [98].

• Quantifying Performance Limits of Layered Architectures: There is a tension between system 
performance and modularity. How to quantify this performance gap—and more importantly, how to 
identify circumstances under which this gap is small—is a crucial challenge that must be overcome in 
developing a quantitative theory of layered architectures. Furthermore, it is not clear how many layers 
are needed to achieve a desired goal. Too few layers may lead to intractable subproblems, whereas too 
many layers may lead to overly conservative and inefficient control architectures. While it is clear that 
there is a principle of diminishing returns at play, it is unclear how to effectively navigate this design 
space. One possible approach is to leverage recent tools from discrete optimization that exploit this 
diminishing-returns property (e.g., submodular optimization [99]) to directly tackle the problem.

• Richer Protocols for Cross-Layer Communication and Co-Design: Using rigid and fixed protocols 
between layers limits both the kinds of guarantees that can be made for the full system, as well as the 
co-design of layers. For example, suppose that a state constraint x(t) 2 X, for X some set encoding 
safety, is added to the OCP (4.1). It is not immediately obvious how to ensure that this constraint is 
satisfied in the layered architecture, as the planning problem (4.2) may result in a dynamically infeasible 
trajectory and the proposed PD controller offers no tracking guarantees. This simple example highlights 
the need for co-design of the planning and feedback control layers. For example, if the PD controller 
can be certified to remain within a bounded distance of all possible trajectories r(t) generated by the 
planner, e.g., via a control Lyapunov function or contraction metric, then it suffices to incorporate 
the constraint r(t) 2 X  in the trajectory generation problem (4.2), where X 2 X  is a suitably tightened 
constraint set. While intuitive, there is no theoretical or algorithmic framework that would output this 
approach naturally. Yet, bidirectional flow of information between layers, as well as layer co-design, is 
crucial to allow for system-level guarantees and optimization.
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4.E.3 Intralayer Control Architecture

Our discussion has so far focused on the challenges inherent to defining a quantitative theory of layered 
architectures. We now turn our attention to the architecture design challenges that exist within a given layer, 
with a particular focus on the feedback control layer. We first discuss the control architecture co-design 
problem, and then highlight existing progress in systematically defining coordination protocols in distributed 
systems.

Control Architecture Co-Design

In the feedback control layer, control architecture is naturally defined as the actuation, sensing, and 
communication network used to implement a given control policy. Once again, a natural trade-off arises: 
controllers with more actuators, sensors, and communication links will typically outperform controllers with 
sparser architectures. However, these hardware components may be costly to deploy, maintain, and power. 
Therefore, a balance between architectural density and closed-loop performance must be struck, suggesting 
that this problem can be naturally posed as a co-design problem where one seeks to minimize both control 
and architectural cost simultaneously.

We begin by providing a brief survey of existing methods for the co-design of control policies and the 
architectures needed to deploy them. We then outline challenges and opportunities for extending these 
concepts to all layers of a control system.

Fundamental Limits and Control Architecture: While H∞ optimal control may be the most celebrated result 
from robust control [100], one of the most impactful outcomes of this line of work is the identification of 
the fundamental limits of achievable control for a given system (see for example [101, Ch. 6]). In particular, 
these results relate the unstable poles and zeros of the open-loop plant to lower-bounds on the norm of the 
(complementary) sensitivity function of the closed-loop system under any possible controller. Most detrimental 
to closed-loop performance are near unstable pole-zero cancellations, which correspond to near loss of 
controllability/observability of an unstable mode. When such a condition is observed, a natural remedy is 
to alter the actuation and sensing of the system (e.g., by adding more or moving existing components) to 
move the unstable zero. Although not explicitly characterized as such, this corresponds to a controller/control 
architecture co-design cycle.

Large-Scale Controller/Architecture Co-Design: While the above approach of hand-designing architectures 
is tractable for single systems with a small number of actuators and sensors, this task becomes unwieldy for 
societal-scale distributed control systems such as the power grid. The general controller/control architecture 
co-design problem can be informally posed as the following multicriteria optimization problem

minimize (control cost) + λ(architecture cost) 
  subject to dynamics and communication constraints.     (4.3)

The challenge in solving problem (4.3) is that minimizing architectural cost is inherently a discrete optimization 
problem, as only integer numbers of actuators, sensors, and communication links can be deployed. In contrast, 
control policy design is inherently a continuous optimization problem. In order to overcome this challenge, two 
complementary approaches have been developed:
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• Sparsity-Inducing Optimization: By recognizing that sparse control architectures can be associated 
with specific sparsity patterns in maps defining feedback controllers, the discrete architecture cost 
can be replaced by suitable sparsity-promoting convex penalties [102, 103]. For example, consider a 
static linear state-feedback policy u = Kx: if the first row K¹ of the matrix K is identically zero, then this 
means that the first actuator, associated with u₁, can be eliminated. Therefore, a natural penalty to add 
to the co-design problem (4.3) would be the group-norm penalty that promotes row-wise sparsity. This 
idea can be generalized to actuator, sensor, and communication network co-design through the use of 
atomic norm [104]-based penalties.

• Discrete Optimization: Another line of work recognized that certain natural control objectives, e.g., 
functions of the controllability Gramian, are submodular, and hence actuator placement problems over 
such objectives can be efficiently solved up to a provable approximation ratio. See, for example, [105] 
and references therein.

Horizontal Decomposition Within Layers

Subsection 4.E.2 proposed the use of vertical decomposition of optimization problems as a path toward a 
principled theory of layered architectures. Here we highlight that a complementary horizontal decomposition 
can be applied to design distributed architectures and protocols within a layer. A canonical example from [98] 
of such a horizontal decomposition is that of transmission control protocol (TCP) congestion control, which 
can be modeled as a distributed solution to the network utility maximization problem

maximize     ∑s Us(xs)            (4.4)  
 subject to    Rx ≤ c.

Problem (4.4) assigns to each source s a utility function Us(xs) that encodes the utility of its rate xs, and combined 
network utility is then maximized subject to resource constraints encoded via the routing matrix R and the link 
capacity vector c. It was shown that the various flavors of existing TCP algorithms (e.g., TCP Reno and Vegas) 
could be reverse engineered using this framework and interpreted as practical approximations to a distributed 
primal dual algorithm solving problem (4.4). These insights were then used to forward engineer new TCP 
variants (e.g., TCP FAST) that significantly outperformed existing algorithms in certain settings. The theoretical 
underpinning of these approaches is the use of a dual decomposition of the resource constraints Rx ≤ c, where 
once again Lagrange multipliers serve as an intralayer coordination protocol across agents in the resulting 
distributed optimization algorithm.

Challenges and Opportunities

While certain aspects of intralayer architecture design have effective solutions (e.g., actuator and sensor 
placement at the feedback layer), other challenges remain unresolved. Here we highlight some possible 
challenges and opportunities for progress.

• Horizontal Decompositions for Distributed Control Problems: The network utility maximization 
problem (4.4) is a static optimization problem aimed at achieving an optimal static and steady-state rate 
allocation. In contrast, a dynamic version of this problem would penalize transients and control effort. 
Existing results in distributed control do not typically take this approach, and coordination protocols are 
often imposed a priori. Is there an appropriate optimization decomposition technique in such a setting, 
and what coordination protocol does it naturally give rise to? One path forward could be to apply an 
operator theoretic perspective to the resulting optimization problem, which would lead to the Lagrange 
multipliers parameterized as dynamical systems, see for example [106].
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• Control Across Spatiotemporal Scales: Many of the problems in this section are motivated by large-
scale distributed systems. In such settings, we often have not only timescale separation, but also 
spatial-scale separation (e.g., in communication networks, these scales could be roughly identified 
as a household network, a local area network, a regional network, and a national network). How can 
locality in spatiotemporal timescales be exploited both within and across layers in a systematic way? 
One possible approach is to extend localized distributed control, enabled by the system-level synthesis 
framework [107], to more general settings.

• Fundamental Limits of Learning-Enabled Systems: As described in Section 4.A, learning-enabled 
and data-driven components will be ubiquitous across all layers. Can a theory of fundamental limits for 
learning-enabled control, akin to that described above from a robust control perspective, be developed 
to inform the co-design of learning-enabled control architectures? Promising initial results of this flavor 
exist wherein information theoretic lower-bounds are combined with concepts from robust control 
suggest a possible path forward, see for example [108, 109, 110] and references therein.

4.E.4 A Societal-Scale Example: The Future Power Grid

This subsection aims to ground the previous concepts, challenges, and opportunities in the context of 
upgrading the power grid.

Timescale Separation 

A major source of complexity of operating a large-scale network, such as a power grid, is ubiquitous stochastic 
and time-varying uncertainties. Dealing with these uncertainties often requires control mechanisms that span 
multiple timescales. For example, frequency control maintains the frequency of a power system tightly around 
its nominal value when demand or supply fluctuates. Frequency control is traditionally implemented on the 
generation side and consists of three mechanisms. Primary frequency control operates at a timescale up to tens 
of seconds and uses a governor to adjust, around a setpoint, the mechanical power input to a generator based 
on the local frequency deviation. This implementation is called droop control and is completely decentralized. 
The primary control can rebalance power and stabilize the frequency but does not in itself restore the nominal 
frequency. Secondary frequency control operates at a timescale up to a minute or so and adjusts the setpoints 
of governors in a control area in a centralized fashion to drive the frequency back to its nominal value and 
the inter-area power flows to their scheduled values. Economic dispatch operates at a timescale of several 
minutes or more, and schedules the output levels of generators that are online and the inter-area power flows 
to minimize the overall dispatch costs. See [111] for a more detailed introduction to these three mechanisms 
in the context of wide-area control of power systems.

These three control mechanisms can be interpreted as three components of a layered architecture, where 
division across layers is naturally defined by timescale separation. Further, since traditional loads change slowly 
and are much more predictable, this timescale separation has been quite efficient where the mechanism at a 
faster timescale tracks the setpoint scheduled by a mechanism at a slower timescale, in a manner analogous 
to the planning/tracking architecture we proposed in subsection 4.E.2 and the autonomy stack proposed in 
Figure 4.5.
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Figure 4.12: Examples of bowtie and hourglass design patterns in the power grid. Bowties allow producers and 
consumers within a layer to interact in a modular way via an interface: here the interface of standardized voltage/
frequency at an outlet allows for a diversity of power sources and sinks to be interconnected. Hourglasses allow 
layers to interact with each other in a modular way via a protocol: in this case, the protocol is a nominal voltage 
setpoint computed at the economic dispatch (planning) layer, which is then tracked by the secondary frequency 
control (tracking) layer. See [112] and [97, Ch.15] for more details.

Spatial-Scale Architecture 

The future grid may be similar to the traditional grid in spatial coverage, but its decision and control architecture 
will encompass many orders of magnitude more sensors and actuators. Traditionally, more than 90% of power 
is generated by less than 20,000 bulk generators in the U.S. and transported to hundreds of millions of users 
by high-voltage transmission systems and middle- and low-voltage distribution systems. The small number 
of bulk generators are connected through transmission networks, where most of the control is applied—from 
capacity planning to generation commitment and dispatch to frequency regulation—all factors that determine 
the dynamics and efficiency of the entire network. A distribution feeder, which may itself be a network that 
feeds a small city, is treated simply as a single network node in such a control architecture. The control 
paradigm is to adapt the small number of large generation nodes to meet demand over the network.

However, as uncertainty increases, this architecture becomes less and less economically efficient, highlighting 
the inherent trade-off between modularity, robustness, and efficiency. Recently, there have been efforts to 
modify these mechanisms to allow a lower layer control mechanism, operating at a faster timescale, to share 
some objectives from a slower timescale, e.g., for secondary frequency control to attain an optimal power 
dispatch. While these richer protocols between layers can help improve system efficiency, they also raise 
questions of potential fragilities due to breaking the clean modularity between layers. This highlights the need 
for a characterization of performance/robustness trade-offs in layered architectures, as well as the need for a 
principled approach to designing richer protocols between layers.
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This pattern will be turned upside down in the future: Bulk generators such as coal and gas plants will be 
replaced by renewable sources, such as wind and solar farms. There will also be an increasing diversity of other 
distributed energy resources (DERs), such as smart buildings, electric vehicles, HVACs, batteries, and inverters, 
especially in distribution feeders. Instead of a small number of large endpoints, the new control architecture 
needs to coordinate dramatically more active endpoints, exacerbating scalability challenges. Furthermore, 
these DERs will introduce large, frequent, and random fluctuations in supply, demand, voltage, and frequency, 
necessitating real-time closed-loop control. Distributed generation will also upset the conventional protection 
architecture that assumes one-way power flow from generators to end-users. To address these challenges, on 
the one hand, distributed algorithms are developed in which each active endpoint could make its own decisions 
based on local measurements and local communications with neighbors. On the other hand, concepts like 
virtual power plants have been proposed where the flexibility of DERs in one region, e.g., on a distribution 
feeder, is aggregated in the planning and scheduling phase and then a target collective behavior can be 
disaggregated to individual DERs during operation. This incoming architectural shift highlights the need for 
principled approaches to control architecture co-design, (i.e., where actuators, sensors, and communication 
networks should be installed), as well as to coordination protocol design. Concretely, we believe that the 
future power grid will need a layered architecture wherein each layer collects and communicates aggregate 
information that summarizes its internal state to layers above and below. Within a layer, distributed solutions 
where each entity coordinates with neighbors through local information exchange takes local control decisions. 
We will need distributed algorithms that induce stable, robust, and efficient global behavior implemented via a 
control architecture (both within and across layers) that facilitates the evolvability of these algorithms.

Interaction Among Engineering, Economics, and Policy: Another complexity of societal-scale systems is 
the coexistence of physics and humans. Components in these systems belong to heterogeneous authorities, 
who may act strategically to maximize profits rather than blindly follow algorithmic protocols. Another 
related concern is that coordination policies may require eliciting private information from owners, e.g., as 
with networked appliances. These concerns necessitate the design of markets, policies, and protocols to 
incentivize individual entities to take actions aligned with the goals of the global system, as well as to protect 
users’ private information. To ensure the successful coordination of the overarching systems, the engineering 
architecture and the economic/policy structure should be integrated and jointly designed, subject to economic 
and social constraints imposed by the legacy system.

This complex multicriteria design problem will necessarily require collaboration amongst experts in different 
areas (using different languages around architecture) including communication, computer networking, power 
engineering, architecture, economics, social sciences, industry, and urban planners, among many others. This 
convergence of disciplines within a single system once again highlights the need for a unified, general, and 
rigorous theory of architecture that can be used as a common language across domains. Our hope is that a 
well-defined theory of control architecture will make this daunting task tractable by defining suitable interfaces 
(within layers) and protocols (across layers) that allow for respective domains of expertise to be integrated in 
a modular yet synergistic way.

4.E.5 Road Map for a Theory of Control Architecture

We end this section with a summary of some of the commonalities and themes that emerge in the above 
discussion and offer a plausible road map for ambitious control researchers interested in demystifying the art 
of control architecture design.
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Architecture Design Is a Multicriteria Optimization Problem: A common theme across this section is the 
need to balance various criteria when (co)designing a control architecture. For example, the cost function of 
the architecture co-design problem (4.3) is a scalarization of the vector-valued cost (control cost, architecture 
cost). In this context, as the two design axes are clear, the main challenge is in overcoming the mixed 
continuous/discrete nature of the problem. While similar vector-valued costs can be defined for designing 
layered architectures, we are faced with the additional challenge that some of the metrics are inherently 
qualitative. For example, it is unclear how a numeric cost can be assigned to the tractability or modularity of 
an architecture. Nevertheless, being able to quantify and navigate the Pareto surface of this design space lies 
at the core of a theory of layered control architecture design.

From Static to Dynamic Control Architectures: Viewing architecture design as a multicriteria optimization 
problem allows us to associate a point on the Pareto surface with a particular architecture and vice-versa. 
Traditional architecture design has looked to find so-called “sweet spots” on this Pareto surface that are 
best suited for the task at hand, and to then build the corresponding architecture. This focus on a single 
architecture was a necessity, as system architecture design was an offline task, typically realized in hardware. 
However, with contemporary advances in hardware/software abstraction and virtualization, many architectural 
components can either be implemented solely in software (e.g., a neural network used as a perception map) or 
hardware components can be spun up/spun down on demand (e.g., compute resources in a data-center). This 
opens up the exciting possibility of developing a theory of dynamic control architectures, wherein we move 
optimally along the Pareto surface as a function of environmental and control task properties.

Reverse and Forward Engineering Control Architectures: Questions of architecture design permeate this 
document and are prominently featured in sections 4.A, 4.B, and 4.D. Any progress made toward a general 
theory of (forward engineering) control architecture will have an immediate impact in these application domains. 
Perhaps less obvious is the opportunity for theoretical developments in reverse engineering existing layered 
architectures, such as in (synthetic) biology (see Section 3.C) and neuroscience (see Section 2.B). Reverse 
engineering of architectures in the internet enabled significant algorithmic and technological breakthroughs 
[98], and the potential for similar insights in other domains is exciting motivation to further pursue the systematic 
study of control architecture.

Software Tools for Control Architecture Design: Existing modeling languages for system architecture 
design, for example SysML [113], offer a promising blueprint to operationalizing the concepts introduced 
in this section. Can a control architecture version of such software packages, tailored to dynamic systems 
evolving in dynamic environments, be developed?

Architecture, More Broadly: While this section has focused on aspects of control architecture design that are 
most familiar to the control theory community, it is important to recognize that architecture is an overloaded and 
broadly used term across various engineering disciplines and scientific domains; see for example [114, 115, 
116, 117, 118]. Nevertheless, common themes emerge across all of these, including layering and protocols. 
Other concepts that we did not touch upon but are crucially important include physical substrate levels (not 
to be confused with the autonomy levels of Figure 4.5), interfaces for the transmission of quantities within and 
across layers (resulting in bowtie design patterns; see Figure 4.12), and the distinction between passive and 
active system components. We refer the interested reader to [112] and [97, Ch.15] for an accessible discussion 
of many of these concepts.
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Recommendations

For young researchers: There is a growing awareness that architectural decisions play an vital role 
in implementing control technologies within real-world societal systems. Virtually all contemporary 
engineering systems of moderate complexity (e.g., aviation, processor design, and autonomous 
vehicles) take a top-down, hierarchical, and layered approach to architectural design. However, 
today’s societal-scale systems (e.g., power grids, social networks, and policy) are the result of an 
evolutionary, bottom-up, and ad-hoc design—and this can result in unforeseen, mysterious, and 
at times catastrophic, failures. In this section, we point to methods that show particular promise in 
the study of control as a control architecture, including layered multi-rate controller design via time-
scale separation, intralayer actuation/sensing/communication architecture and controller co-design, 
and the application of these concepts to redesign the power grid to integrate distributed renewable 
energy resources.

For funding agencies: The quantitative study of the role and design of architecture in complex systems 
is essential to creating sustainable infrastructures that support societal needs. To understand control 
architecture at a societal scale, we need systems-level thinking in terms of layering, feedback, and 
abstraction. Control theory will be central to the development of this theory of architecture, and new 
tools will be needed to solve currently intractable problems. While an integrated, unifying framework 
of architecture remains a long-term vision, recent developments in optimization, controls, robotics, 
and systems engineering show early promise as intermediate objectives in this challenging area of 
research. 
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Systems and control is a horizontal scientific discipline that does not directly translate into a specific technology. 
Thus, it has suffered from the theory/applications dichotomy for decades. To quote, Steven Low’s column in 
Control Systems Magazine [1], “The gap between theory and practice is a lot bigger in practice than in theory.” 
What is the way forward for systems and control to shift into an overall go-to-market strategy? Will entrepre-
neurial communities play a game-changing role?

Abstract Over the next decade, the control systems community (including academics, young professionals, 
practitioners, and entrepreneurs) has the opportunity to transform scientific results into beneficial technologies 
and products for society at large. In this section, we discuss the path from academic research toward industrial 
uptake and product development. We provide data about the importance of systems and control to industry, 
identify key ways that the academic community has historically failed to engage with the industrial ecosystem, 
and discuss potential solutions. Particular attention is given to the validation of research outcomes at a range 
of levels, from lab-controlled to real-world environments. We believe that the lack of validation is a major 
obstacle for technology transfer, and that the academic community can play a crucial role in closing this gap. 
We further suggest a pathway for better engagement with collaborative innovation ecosystems. This can 
reveal new avenues of research in academia, and ultimately enable a paradigmatic shift in the societal impact 
of control systems.

5.A Introduction

Stefano Di Cairano, Johan Eker, Sonia Martinez, Thomas Parisini, Tariq Samad 

The industrial ecosystem needs control systems. In this section, we propose measures and 
recommendations for next-generation research validation that can bridge the gap between academia and 
industry and enable the development of control technologies and products with high societal impact.

Technology Validation & Translation
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Figure 5.1: The road from academic research to industrial uptake is long and winding. However, by clearly 
identifying the steps involved and the current barriers, we believe the uptake of research results may be 
significantly improved.

Over the next decade, the control systems community (including academics, young professionals, practitioners, 
and entrepreneurs) has the opportunity to transform scientific results into beneficial technologies and products 
for society at large. Figure 5.1 shows a schematic view of the path from academic research toward industrial 
uptake and product development. We provide data about the importance of systems and control to industry, 
identify key ways that the academic community has historically failed to engage with the industrial ecosystem, 
and discuss potential solutions. Particular attention is given to the validation of research outcomes at a range 
of levels, from lab-controlled to real-world environments. We believe that the lack of validation is a major 
obstacle for technology transfer, and that the academic community can play a crucial role in closing this gap. 
We further suggest a pathway for better engagement with collaborative innovation ecosystems. This can 
reveal new avenues of research in academia, and ultimately enable a paradigmatic shift in the societal impact 
of systems and control.
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5.B Engagement in Industrial Ecosystems

Control systems play a central role across a remarkable breadth of application domains and industry sectors: 
aerospace, automotive, biomedical, building, and many others. The vast and ever-expanding array of control-
enabled products, services, systems, and solutions is a testament to the societal importance of the discipline.

Despite this fact—or perhaps because of it, since meeting such diverse needs requires extensive abstraction 
of fundamental theories and methodologies—industry’s level of engagement with the control research 
community is currently poor. This is a disadvantage for both sides: it takes longer for industry to benefit from 
new research results, and research efforts are poorly informed by real-world requirements. A paradigmatic 
shift in the industry’s engagement is necessary and timely. We believe that enhancing the control research 
community’s understanding of the industry and practical applications is essential for bridging the gap. In [2], 
10 messages for the control research community are enumerated to this end (see Table 5.1). Here, we further 
abstract these messages, identifying five crucial “dimensions” of understanding.

Table 5.1: Ten messages for the control research community (reprinted from [2], copyright 2020, with permission 
from Elsevier).

1. Advanced control technologies vary significantly in their impact and perceptions thereof

2. The control research community is broadly unaware of the impact of advanced control

3. Real-world success requires domain understanding

4. Control technology implementation infrastructures and architectures are industry-specific

5. Advanced control is more than feedback control...It is a systems-oriented, rigorous mindset

6. Control science has broad-based relevance for new and emerging technologies

7. Corporate r&d can (sometimes) serve as a bridge for technology transfer of academic research

8. Cost reduction is a high priority for industrial innovation in control

9. Economic expectations influence industry investment in research

10. The industry-academy disconnect extends to education

In elaborating on the dimensions for understanding industry and applications, it is worth highlighting different 
industry sectors, types of products and services, companies, and even different groups or businesses within 
companies. In each case, specific and often idiosyncratic contexts, requirements, and considerations can 
apply. We can define five dimensions of knowledge and understanding, all of which should be traversed by 
researchers seeking industry impact in their work:

• Scientific: Here we refer to physics, chemistry, biology, or other scientific fields that underpin the 
problem to be addressed by automation and control. In developing a control algorithm for a nonlinear 
petrochemical process, for example, an understanding of the reaction chemistry is important. Similarly, 
for flight control, aerodynamics must be understood. The field involved does not have to be a natural 
science. Computer and communications science lies behind software and computational applications 
and are relevant to today’s CPS.
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  The dynamics of the phenomena involved are presented in a language familiar to control systems 
researchers—which is, of course, mathematics. Thus, this aspect of industry application is one that 
is well within the comfort zone of these researchers. Indeed, the control research community may 
mistakenly believe that, once they have grasped the scientific basis of the application domain, their 
understanding is largely complete.

• Engineering: In this context, we mean the objectives, requirements, and constraints associated with 
a given application. Examples include safety and reliability, performance as measured by speed or 
precision of control, efficiency or control effort, cybersecurity, and cost reduction. The last is worth 
emphasizing: a recent survey of industry sectors, reported in [2], found that cost reduction was one of 
the top three requirements for all but one of the sectors (the odd one out is medical technology). Yet 
the focus of most control research projects is performance and robustness, and cost reduction is often 
not considered.

• Technological: The engineering of an automation system involves technological platforms and 
components that are usually specific to an industry sector or application domain. An partial list of these 
components and platforms would include:

 – Sensors and actuators, whose limitations and capabilities must be understood

 – Computational engines, which can be embedded microprocessors, centralized computational 
facilities, and, most recently, cloud-hosted applications

 – Communication networks, whose bandwidth and latency will affect control designs

 – Real-time operating systems

 – User interfaces

  The technological elements of industry-specific automation are often standardized. The standards 
are often, but not always, open and industrywide. Suppliers of control systems and components, or 
large companies themselves, may require adherence to their prescribed communication protocols or 
interfaces.

  Familiarity with technological standards and practices will facilitate the translation of research results 
into functional products.

• Economic: The overarching objective of any public corporation is to make money. Decisions at high 
levels of companies are made with this objective foremost in mind. Resources, whether finances 
for investment or people for development, are always limited, and executives must consider risk/
reward trade-offs in their decision-making. Important considerations include: How much will a new 
development cost to commercialize, and what return on investment can be expected? How do those 
numbers compare with other opportunities, whether in the same general area or not? Is the targeted 
application sector growing, and if so, what is the compound annual growth rate (CAGR)? What is the 
competitive landscape and does it support the investment required? See Table 5.2 for an itemization 
of recent data related to market size and growth rates for several industry sectors and cross-industry 
technology areas.

• Sociological: We use this term somewhat loosely to refer to the human element of an industry sector. 
For example, what type of operators or engineers will be available to install, commission, and maintain 
an advanced control solution? The education level of operational staff and the availability of Ph.D.-
level resources in the organization can make the difference between a research development being 
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incorporated in commercial practice and being relegated to the shelf. Whether a workforce is unionized 
can affect training needs and the acceptance of solutions that could result in jobs being lost in one area 
and gained in another.

In summary, bridging the gap between research results and their usability in industry is a key step in achieving 
structural industry engagement. In the rest of this chapter, we will focus on the technological dimension and 
the research–validation–transition workflow as a future key enabling factor.

Table 5.2: Sales volumes and compound annual growth rates (CAGR) for selected control-related industry 
sectors and cross-industry technologies. Sources listed are market reports and press releases thereof and 
were accessed Dec. 27, 2019. (Reprinted from [2], copyright 2020, with permission from Elsevier).

Control industry  
sectors in $B (year)

Sales  
volume

Growth 
(CAGR)

Period for  
CAGR

Source

Industrial Control 117 (2017) 5.3% 2018-2025 https://tinyurl.com/yxd2gya7

Automotive Control 63.6 (2017) 4.4% 2019-2025 https://tinyurl.com/uy78wfp

Aircraft Flight Control 11.1 (2017) 3.52% 2018-2023 https://tinyurl.com/ydf7uqo8

Industrial Robotics 16.5 (2017) 12.0% 2020-2022 https://tinyurl.com/wkd3d23

Smart Home Automation 75 (2018) 11.8% 2019-2025 https://tinyurl.com/vz2ozk5

Cross-Industry Technology Areas

Cybersecurity 119 (2018) 14.5% 2019-2024 https://tinyurl.com/ve82q32

Digital Transformation 262 (2018) 18.2% 2019-2026 https://tinyurl.com/yynu6plb

Internet of Things 190 (2018) 24.7% 2019-2026 https://tinyurl.com/y2czseqh

5.C Validation

The path that takes fundamental research to real-world problem-solving is long and complex. New control 
methods may be analytically demonstrated to provide significant benefits with respect to standard methods, 
but in order to gain the trust of final implementer (whether a company or a government regulator), extensive 
validation work must be completed. Experimental validation in the final preproduction setup is too time-
consuming and costly. Therefore, we usually take a sequence of intermediate validation steps of increasing 
complexity, from simulation models and hardware-in-the-loop digital twins based on first principles and/or 
data to full-fledged experimental setups.

While there is a clear economic benefit to validating theoretical results in environments that are closer to a final 
target application, the validation process can raise issues that are not yet ideally addressed by the original 
control design, thus spurring new research. In addition to the generalization of the theory, the context provided 
by these applications is invaluable. It can help provide further understanding of why things work the way they 
do and enable extraction of greater value from the theory. Closing the gap between theory and its impact 
on the real world is also crucial to attracting new researchers and students to the field and to engaging the 
general public. This is done very effectively in other communities. One example is the ImageNet dataset [3] 
which has been instrumental in advancing research in Computer Vision and Machine Learning by providing 
a common benchmark for comparing algorithms and methodologies. It has also been used to benchmark 

https://tinyurl.com/yxd2gya7
https://tinyurl.com/uy78wfp
https://tinyurl.com/ydf7uqo8
https://tinyurl.com/wkd3d23
https://tinyurl.com/vz2ozk5
https://tinyurl.com/ve82q32
https://tinyurl.com/yynu6plb
https://tinyurl.com/y2czseqh
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computation aspects like hardware acceleration. OpenAI Gym [4] provides a similar environment for evaluating 
reinforcement learning algorithms. Kaggle [5] is a crowdsourced platform for Machine Learning research. It 
started out hosting competitions (which continue this day), but it has also become a public data platform 
offering a wide collection of datasets and tutorials. Anybody can set up a Kaggle competition and invite the 
community to participate. This kind of gamification of research is largely lacking in the control community, 
although some competitions are starting to appear at conferences, such as at the 2020 IFAC World Congress. 
Control publications are also behind in engaging with the reproducible research initiatives by IEEE [6].

In the next three sections, we discuss the main components, challenges, and potential benefits of validation 
infrastructure in enabling new control developments. We aim to lay out a road map to validation infrastructure 
for deployable large-scale, real-world control systems. Key elements include suggesting a sequence of 
validation steps, advocating for open-source validation resources, and calling for the creation of standardized 
tests and benchmarks that can freely be used by the community to increase the impact of control system 
technologies. By validation infrastructure, we refer to the entire set of tools, including experimental hardware, 
simulation software, datasets, and benchmarks which can help demonstrate the benefits of a control method. 
A validation process encompasses the application of the control methodology on benchmark problems, 
simulations of different complexities, laboratory experimental testbeds, and scaled (dimension and extension) 
experimental prototypes. We start by presenting a brief, account of various efforts that focus on one or more 
of these stages of validation, followed by a more detailed description of these steps.

5.D Current Status of Benchmark and Testbeds

There are multiple levels of validation of a control method or technology, going from detailed simulations to 
hardware-in-the-loop experiments and digital twins, each with different levels of precision.

Control research has often leveraged standard abstract problems such as the inverted pendulum, (possibly) 
interconnected mass-spring-damper systems, and (multiple) water tank(s). All of these paradigmatic examples 
can easily be expressed as control systems, and thus are readily available for control method evaluation.

In assessing a control method in a specific target application, the first step before moving to actual experiments 
is usually the verification of the control method on detailed simulation models. In many cases, these models 
and tools have been built and shared with the control and research communities at large. Some examples 
include benchmarks for fault-tolerant control of wind turbines and wind farms [7, 8], pulp mills for process 
control [9], the ADMIRE aircraft benchmark [10] and the A320 model in the SMAC toolbox [11], and the Toyota 
Prius model included in PSAT [12] (now Autonomie). There are numerous simulation tools for power grid 
simulation and control. Of special note are those produced by energy national laboratories and the EPRI 
(Electric Power Research Institute), which include OpenDSS [13] and GridLAB-D [14] for simulation of power 
distribution networks. In this case, simulation models are usually not in a form that can be used directly for 
control purposes, so the extraction of a control-oriented model that is suitable for the applied method requires 
time and effort. However, these benchmarks provide valuable proof that the control methods have the potential 
to work in real-world applications.

Datasets are also effective for such types of validation. In many branches of signal processing, validation 
datasets are quite common; one of the oldest open datasets is the UCI Machine Learning Repository [15]. 
For control, the use of prerecorded datasets is more challenging, because if plant behavior is changed by 
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the control method, the data needs to change as well. Still, datasets can be used as real disturbances, for 
validating estimation and fault detection methods, and to determine parameters for simulation models. Some 
key examples of relevant datasets (primarily from power domain) are NREL’s repository [16] on buildings, grid, 
solar, wind and transportation data; DataHUB at PNNL [17]; the Open Data Initiative at LLNL and CityBES 
[18, 19, 20]; and EPRI’s EPRI10 [21]. Additional examples are the PeMS Performance Measurement System 
(PeMS) data source [22] with data from California’s metropolitan area freeways; the Building Performance 
Database (BPD) [23] from DoE; and NuScenes for perception and autonomous driving [24]. In recent years, 
datasets have become increasingly available through public, private, and government efforts. At the time of 
writing, the aforementioned Kaggle [5] returned 2,880 datasets on COVID-19, six on robotics navigation, and 
22 on fault detection. GitHub [25] and Google’s dataset search engine [26, 27] are other good sources of 
datasets. Commercial publishers are also offering repositories for datasets, such as IEEE DataPort, the Open 
Data tool from Elsevier, reference [28] which provides links to datasets, and software through ArXiv.

Moving into the physical world, the first validation steps involve implementation on laboratory testbeds, which 
on a small scale can replicate real application systems. Examples include [29, 30, 31, 32, 33, 34, 35, 36, 37, 38], 
which span automotive, aerospace, robotics, and air conditioning applications. In power systems and energy 
research, there are several tools that include hardware-in-the-loop as part of their testing. Some examples are 
the commercial tools RTDS [39], Typhoon-HIL [40], and the Grid Simulation and Power Hardware-in-the-Loop 
from NREL [41]. Proprietary digital twins in the process and metal industry are also becoming common, even 
though they use commercial platforms and are not publicly available (see, for example, the gPROMS platform 
[42]).

In recent years, there have been successful efforts in providing shared and remotely-accessible testbeds that 
can serve as standard platforms for experimental evaluation. One example is the SPHERES [43] testbed from 
MIT, which allows researchers to remotely deploy control algorithms in the International Space Station (ISS) 
through a guest scientist program (GSP). Besides a flight testbed that is operated by astronauts, the SPHERES/
GSP testbed consists of a simulator for researchers to run locally. A more recent example is the Robotarium 
[44] at the Georgia Institute of Technology, which enables deployment of algorithms for multirobot control 
from anywhere in the world. Users can test and develop algorithms locally using the Robotarium simulation 
API and then deploy them on the actual plant by uploading the code. The code is stored indefinitely, allowing 
for experiments to be repeated and verified later with identical configuration. A slightly different approach is 
proposed by Duckietown [45], an open-source platform for experiments with self-driving vehicles. This is not a 
remote testbed but rather a blueprint for developing standardized local deployment. DERConnect is an NSF-
sponsored national infrastructure for experimenting with real and simulated distributed energy resources and 
distributed control at a large scale [46]. This national resource, which is currently under construction, will be 
remotely available for researchers and practitioners in academia and industry alike.

Before moving to actual “preproduction-like” testing, the final and most challenging experimental validations 
leverage real-size testbeds in environments that are open yet limited and possibly controlled. In these, the 
control method is deployed on a prototype that closely resembles a potential final product and needs to 
contend with similar conditions to those encountered in real life. But its operation is more limited, because 
some of the externally imposed environs are shaped to excite specific behaviors but are also likely less random 
and rich than those in real life. Some examples (drawn specifically from automated driving, smart cities, and 
robotics) are Toyota’s Woven City [47] for testing tomorrow’s smart city technologies, Mcity [48] for automated 
driving, competitions such as the DARPA Grand Challenge [49], the Urban Challenge [50] for automated 
driving, the Robotics Challenges [51], and the Subterranean Challenge [52].
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5.E Validation Steps and Corresponding Tools

The validation of a new control method and its implementation on an actual plant proceeds through multiple 
steps. These steps, from fundamental research to its real-world application, have different definitions according 
to the process being applied. One particularly famous example is the NASA Technology Readiness Levels (TRLs) 
[53]. TRLs cover the evolution of new technology from basic principles investigation (TRL-1) to deployment in 
the final system (TRL-9) for NASA spacecraft. The higher TRLs are naturally adapted to a specific development 
organization (usually a company or a government entity) while most of the open-access research in academia, 
government, and industry (and collaboration among those) tends to cover TRL-1 through TRL-5 or TRL-6. 
Each TRL requires a specific level of validation, in relation to the maturity of the prototype, to the type of tests 
executed and to the environment in which those tests are developed.

Inspired by TRLs, but with a slightly modified structure due to our focus on the validation of new technologies 
in the open-access research domain, we chart below some of the major levels of validation for control. They 
proceed from fundamental research to final-deployment organization, i.e., when they have provided enough 
evidence to indicate they can work in practice. See Figure 5.2 for a schematic representation of these levels.

1. Method Evaluation: This level typically consists of simulation studies on relatively simple and 
standardized benchmarks. These studies are aimed at confirming theoretical findings in a “clean,” 
unperturbed environment, assessing the limits of the method when departing from theoretical 
assumptions, and providing data for comparing the new technology with existing ones. Here, it is 
key to have a proper set of widely accepted benchmarks or to identify challenging benchmarks 
that can highlight the relevant and novel properties of the technologies in question. Naturally, as 
industry standards progress, so would this collection of benchmarks. Such a collection should be 
thoroughly explained in a handbook and maintained in available open-source code for some (or most) 
of the standard development platform (e.g., Python, Julia, MATLAB). Examples: standard control 
benchmarks, such as the inverted pendulum, water tank systems, mass-spring-damper systems, or 
a DC-motor with flexible shaft.

Figure 5.2: Validation steps and tools for each step.
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2. Application Evaluation: The previous validation step should provide a range of hypotheses on how 
the new technology will handle specific issues of a given application. It should also address particular 
limitations of the current state-of-the-art methods used for that application (relative to performance, 
cost, robustness, etc.). This second validation step usually consists of simulation studies using simple 
models of the plant. These models are similar but not equal to those used for control design; they may 
have low/medium fidelity for quick assessment of the technology. Here, the key is to use simulation 
models that are simple enough to provide clear data and easy and fast to run, while still capturing the 
most challenging characteristics of the final application. Examples: classical models for application 
such as vehicle dynamics/kinematics [54, 55, 56], spacecraft equations of motion [57, 58], robot 
operation [59, 60], circuits/grids using IEEE standards, biological systems [61].

3. Performance Analysis: This refers to a realistic assessment of the potential impact of the new 
technology, before its actual implementation, on a more realistic model of the actual plan. This third 
step usually consists of simulations employing a high-fidelity model of the plant, which are far from 
the control-oriented model and which can include finite-elements methods, multi-body dynamics, 
acausal modeling languages, and program-oriented simulation models. These simulations are typically 
much slower to execute. They can also include limited hardware-in-the-loop. It is vital to have access 
to realistic simulation models. They are often provided by third parties to avoid biasing the results. 
They should also be simple to connect and use, so as to enable fast development and analysis of 
the results. Reliability of the models can be further assessed by “tuning,” using real or synthetic data 
from the target application (or a similar one). Examples: high-fidelity models developed in simulation-
oriented software packages, either for general physics, such as Modelica, Simscape, OpenFOAM, 
COMSOL [62, 63, 64, 65], or for specific applications, such as CarSim, CarMaker for automotive [66, 
67] and Ansys STK for spacecraft [68], as well as real-life datasets, when available for the application 
and appropriate for the developed function, possibly also used to calibrate the simulation models.

4. Prototype Evaluation: This consists of an evaluation of the technology on a scaled system in a 
controlled laboratory environment, subject to disturbances and imperfections that are typical of the 
actual plant. This validation aims to verify the operation of the new technology with a physical plant. 
In a laboratory setting, its robustness is verified to typical disturbances and imperfection and its 
execution is verified in real time and with real communication constraints and computational and 
communication delays. Although it may be scaled down, a testbed must be affected by disturbances 
and modeling errors that capture the principal corresponding ones in the actual application. It should 
also be simple to manage, modify, and extend. Examples: Hardware-in-the-loop setups [39, 40, 41, 
46], laboratory testbeds [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 45], and remotely accessible testbeds 
[43, 44, 46].

5. Prototype Demonstration: This refers to the final evaluation of the full plan in a limited, monitored 
open environment. This validation assesses the operation of the technology in real conditions with the 
full-size plant or a minimally scaled plant. The key is to have access to an open environment where the 
technology can be safely tested while being constantly monitored by a set of resources that are not 
available in the final applications and are not used by the technology directly. Examples: Prototypes of 
energy efficient/smart buildings [69] and smart cities [47], realistic test areas for autonomous vehicles 
[48, 70], and competitions such as [49, 50, 51, 52].
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5.F Desired Features of Validation Infrastructure

A good overview of traditional control system testbeds is given in [71], which outlines a set of important criteria 
for a successful industrial control testbed, based on earlier work from the Emulab testbed [72]:

• Fidelity – The testbed should represent the physical system as accurately as possible.

• Repeatability – Repeated experiments should yield the same or statistically consistent results.

• Measurement Accuracy – Monitoring should be accurate and not interfere with the experimental 
results.

• Safe Execution – Research activities should not be able to cause any devastating effect on the 
physical system and personal safety.

Control systems research is constantly uncovering new target applications—from automated vehicles to smart 
cities, from synthetic biology to social dynamics, and from autonomous spacecraft to swarms of UAVs. Thus, 
the validation infrastructure for proving the impact of new control methods must evolve as well. Based on the 
known and predicted target applications of control systems in the near to mid-term future, we outline some 
additional features, beyond those in [72], that validation infrastructure should have in order to provide effective 
and convincing results:

1. Multi-Domain: As systems become more complex—involving elements from multiple 
electromechanical, biological, information, and human/social domains—their validation infrastructure 
should consistently support all of these domains, or at least several of them. Thus, it is important 
to investigate these domain interactions as well as the performance of the control method on each 
domain. Examples with multi-domain characteristics include bio-inspired robots, hybrid/electric 
vehicles, HVAC/building control, crowd motion control, opinion dynamics, deep-space spacecrafts, 
and epidemic dynamics.

2. Complexity-Scalable: Another dimension of system complexity is the “parts” the systems are composed 
of and their coupling (in, e.g., multi-agent and possibly heterogeneous systems, multicomponent 
systems, layered control architectures, and interconnected systems.) The validation infrastructure should 
be able to scale and validate the interactions between these various components. Examples include: 
disaster relief robot teams, connected automated vehicles, autonomous driving software architecture, 
power grids, smart cities and infrastructures, and, more generally, large CPS.

3. Enabling Integration of First Principles and Data: All applications are based on fundamental physical 
principles, but no physical principle alone perfectly models observed reality. Validation infrastructure 
must therefore enable first-principle modeling, data-based modeling, and, especially, the integration 
of physics-based modeling with data-based modeling (i.e., so-called data-augmented model-based 
design). Examples: powertrains (conventional and hybrid), vapor compression cycles, robot and 
automated vehicle motion, crowd modeling, and social information dynamics.

4. Digitization and Networked Architectures: At the core of control application expansion is the 
prevalence of computational resources interconnected by communication networks: microprocessors, 
embedded systems, GPUs, edge-computers, and cloud resources. While widespread, these resources 
are still limited, so the validation infrastructure needs to be able to assess the impact of software 
architecture, connectivity requirements, computational load, and communication bandwidth on control 
methods—and vice versa. Examples include: automatic manufacturing, connected automated vehicles, 
autonomous logistics, multi-spacecraft/UAV systems.
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5. Movable Boundary: Each system is part of more complex system and/or environment, and different 
validation phases may draw boundary lines for modelled interactions in different places. The validation 
infrastructure must enable moving such boundary lines to model less (in the initial phases) or more 
(in later phases) interaction of the system components and of the system with the environment. 
Examples include: electric vehicles, power grids, autonomous vehicles, vapor-compression systems, 
human social interaction systems.

6. Rapidly Prototypeable: Unlike the final application, validation infrastructure needs to be easily (re)
programmable to allow rapid testing of and rapid changes to the method, without excessive time 
spent implementing the controller. The architecture should be open as much as possible and enable 
the use of open-source software, possibly coded using different platforms. Examples include: 
automated code generation, cross-compiling, virtualization, ROS integration, modular architecture, 
and digital twins.

5.G  Translation of Research Outcomes to Innovation  
and Products

The previous sections highlighted the key elements enabling the translation of R&D outcomes into innovation 
and, eventually, products. Significantly increasing the active presence of control technology startups and 
spinoff companies in innovation districts1 is a potentially disruptive opportunity. There are already significant 
use cases that support this outlook. Around the globe, innovation districts are bringing together researchers, 
early stage entrepreneurs, and corporate leaders to work and live in open ecosystems.

Innovation districts have a strategy and business model that have changed dramatically over the last few years. 
Companies have moved away from closed innovation models to more open approaches in which organizations 
work in collaborative networks and form novel partnerships between previously unrelated industries.

Innovation districts differentiate themselves from traditional science or business parks. Unlike incubators, 
they include a wide range of businesses across the ecosystem, from startups to large corporations. They 
lend themselves well to complex and multidisciplinary activities in areas of convergence between different 
sectors. As a key enabling methodologies and technologies, systems and control are ideally placed to grow in 
Innovation district-like ecosystems with effective pipeline mechanisms sourcing talent and research outputs 
from one or more leading universities. Major institutions can generate significant market value, particularly 
those that are “research-intensive.”

Innovation districts bring together large and small companies, universities, and research centers in order to 
foster leading-edge advancements in key industrial sectors. These ecosystems follow the Open Innovation 
paradigm, which holds that synergies between different fields and firms can accelerate development and bring 
powerful new solutions to market. All players share and collaborate throughout the entire journey, from initial 
brainstorming to product launch. This sharing includes intellectual property rights (IPR), and only at higher 
TRLs do the different companies customize their activities to their product. This is an ideal ecosystem for 
horizontal technologies like control engineering.

1 https://en.wikipedia.org/wiki/Innovation_district

https://en.wikipedia.org/wiki/Innovation_district
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Recommendations

In this section, we list a set of recommendations for advancing the area of validation and facilitating 
translation to innovation and technology transfer.

Short Term

• Stress the important contribution of validation in the application of fundamental research. 
Leverage journals, e.g., IEEE Transaction on Control Systems Technology and conferences 
e.g., IEEE Conference on Control Technology and Applications should highlight the validation 
of control research (especially steps 3–5). Promote special sessions and special issues 
focusing on validation and make validation visible in calls for papers.

• Refocus CSS publications, including Control Systems Magazine—CSM, to regularly feature 
content of interest to industry and articles from which researchers could learn about industry 
perspectives. Alternatively, a new industry- and application-oriented publication could be 
founded.

• Support initiatives for open-source code distributions associated with novel control research. 
Code distribution will promote reproducibility of results, help to disseminate knowledge, 
speed up progress, and strengthen the trust of final implementers of control research.

• Offer industry- and innovation-relevant training to interested control students, faculty, 
and young professionals. This could be accomplished through workshops, short courses, 
webinars, and more. The offerings could cover business foundation and innovation 
management topics, as well as overviews of industry applications.

• Launch an “Industry Experts” program at research-oriented control conferences (e.g., IEEE 
CSS and IFAC) to promote industry participation. This program could give select industry 
leaders a professional distinction and support travel to our conferences for presentations and 
curated discussions. 

5.H Concluding Remarks

In this chapter, we focused on how to narrow the gap between academic research and industrial needs. We 
identified obstacles in various different dimensions, from technical to sociological, which have historically 
prevented the translation of research results into impactful products. We believe validation will be a key 
component in technology transfer and we have proposed a structured method to introduce validation at 
different levels. This paradigmatic shift will require new common testbeds and use cases, as well as a new 
spirit of free collaboration between scholars and practitioners.
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Medium Term

• Extend the set of standard benchmarks and make digital twins of challenging industrial 
applications openly available to control researchers. Beyond the inverted pendulum, double 
integrator, water-tank control, continuously stirred tank reactor, simplistic quadrotors, etc., 
new benchmarks should enable the comparison and analysis of new control methods. These 
benchmarks should be real-world motivated, simple enough to allow clear early assessment 
of the methods, and general enough to address multiple aspects of future control research.

• Promote and support initiatives that enable the acquisition, refinement, validation, and 
open distribution of data for configuring and calibrating realistic simulation environments. 
Incentivizing making this information available to the entire community will empower further 
comparative analysis of new control methods on a standard test base.

• Support and encourage the development of shared, realistic, small-scale prototypes to 
evaluate control in safe and controlled environments like laboratories and small testing facility. 
Enabling remote accessibility will allow the entire community to benefit from a standardized 
method for testing the outputs of control research.

Long Term

• Aggregate, develop, and promote high-fidelity validation platforms—especially simulators—
focusing on realistic open-source platforms that provide a high degree of property 
preservation when translating methods to real-world applications.

• Support and incentivize partnership with companies and governmental entities to 
establish larger, more realistic testbeds at full- and quasi-full scale. Such controlled and 
monitored environments will provide the strongest level of validation before transfer of the 
technologies to final implementers.

• Foster the growth of a research culture that facilitates translation to high-impact products 
and bridges—once and for all—the theory/practice gap.
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Education

Abstract In the face of rapidly developing societal challenges, the continued growth and success of the 
Control Systems field will rely on continued learning and education of rapidly developing societal scale 
challenges. While we recognize the need for greater outreach to secondary and high-school populations,  
we believe there are much broader needs across all areas of science and engineering. Thus, our emphasis  
in this report is on curricular changes at the university level. We assembled a panel of experts in the field whose 
deliberations have led to three key recommendations:

1. Introductory courses in Control Systems should emphasize the broader applicability of control.

2. Control Systems courses should be made available earlier in university curricula with the aim  
of teaching fundamental concepts to a broader group of students.

3. Given the scope of the Control Systems field, modular organization of teaching material may  
be a more effective way to impart knowledge.

These recommendations are based on the recognition that new mathematical models and methodologies 
are required for the control design of systems that dominate 21st century technology. This is especially 
true for nonlinear systems with increased levels of uncertainty, those with humans-in-the-loop, and those 
with the emergent properties of safety and resilience. Also worthy of special attention are systems with 
hybrid dynamic characteristics, i.e., a combination of time-driven dynamics (for physical processes) with 
event-driven dynamics (for computer-based and networking components). This report provides specific 
suggestions for how to structure and name new courses, adapt to the new generation of students, decide  
on different concepts and methodologies to emphasize, and identify appropriate modules from which courses 
can be constructed. We also include an example of a new introductory course currently in use.

João P. Hespanha, Christos G. Cassandras, Panos J. Antsaklis, Gireeja Ranade,  
J. Anthony Rossiter, Florian Dörfler, Steven L. Brunton 

Education is the prime catalyst for growth and prosperity in Control Systems. This chapter discusses 
university curriculum changes in this field of study. It proposes specific suggestions for concepts and 
methodologies to emphasize and ways to adapt to a new generation of students.

In the field of Control Systems, our overall goal is to make a system behave in a desirable way. It stands to reason 
that the field is driven by the systems that society is interested in and relies on. In studying and developing 
control mechanisms, we seek to understand the characteristics and dynamic behavior of these systems. As 
the world’s needs and aspirations evolve, these vital systems become increasingly more complex. Not only are 
the problems we need to address more challenging, but the performance expectations are more demanding and 
specifications are much tighter. 

6.A Present State and Future Outlook
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Among the key societal drivers that define the applications where control plays an increasingly important role are:

• Feeding the world: digital farming

• Climate change

• Space: the final frontier

• Underwater exploration

• Biomedical engineering and disease control

• The Sharing Economy

• Cybersecurity

• Geostrategy

These examples—spanning numerous disciplines like aerospace, biology, and economics—illustrate the breadth 
of scope for Control Systems. Education will be key to addressing these rapidly evolving challenges.

Education includes the K–12 levels as well as undergraduate and graduate-level curricula. It also goes beyond 
formalized curricula and into professional training that fills in the gaps between courses and addresses specific 
industry needs. Here, we restrict our inquiry to university-level curricula in control theory and engineering. We do, 
however, recognize the need for outreach to secondary and high-school populations, as well as the cultivation of 
entrepreneurship in postsecondary learning environments.

The topics of training and industry engagement are also of critical importance when it comes to education, and 
we refer the reader to Chapter 5.

6.B Curriculum Changes

Three significant recommendations were identified by our expert panelists:

1. Introductory courses in Control Systems should emphasize the broader applicability of control.

2. Control Systems courses should be made available earlier in university curricula with the aim  
of teaching fundamental concepts to a broader group of students.

3. Given the scope of the Control Systems field, modular organization of teaching material may  
be a more effective way to impart knowledge.

6.B.1 Updating the First Course In Control for Broader Applicability

Why is updating introductory control courses an important and urgent need? Unlike the technological 
innovations of the mid- and late 20th century, the world’s emerging systems are nonlinear, feature increased 
uncertainties (e.g., with humans-in-the-loop), and feature hybrid dynamic characteristics, i.e., a combination 
of time-driven dynamics (for physical processes) with event-driven dynamics (for computer-based and 
networking components). Such systems are now often referred to as cyber-physical. Novel mathematical 
models and methodologies are needed for the control design of these systems.

Frequency vs. Time Domain Methodologies: Frequency domain methods—so prevalent in electrical 
engineering, with their strong connection to linear constant coefficient Ordinary Differential Equations (ODEs)—
are often the only control design methods that beginning students are exposed to. But they may not be the 
best way to convey the generality and importance of control. In introductory courses, it is no longer sufficient 
to exclusively focus on the design of LTI controllers using traditional methodologies like Bode plots, Nyquist 
plots, and the Root Locus method. It is important to introduce more general systems than the ones described 
by linear ODEs with constant coefficients, including the incorporation of nonlinear models, automata, and 
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hybrid automata. A modern understanding of Control Systems must address systems in a student’s daily life, 
from digital control components embedded in smartphones and portable healthcare devices to large-scale 
networked systems in mobility-on-demand and autonomous UAV teams.

This raises the question: Should an introductory course emphasize modeling, optimization-based control, 
data-driven control, and time domain methods? Although it may be exciting to discuss ingenious approaches 
to design that use approximate relations and shortcuts in the frequency domain that were introduced before 
the digital era, that does not address current students’ interests. 

Embracing Computational Methods: Conventional control courses primarily focus on analytic methods, but 
in their professional lives, students will rely on computational techniques. Rather than resisting this paradigm 
shift, control courses should locate and highlight synergies between analysis and computation, e.g., between 
classical lead/lag compensation and numerical loop shaping techniques, or between dynamic programming 
and reinforcement learning. One of the main challenges in this new approach is to identify a set of essential 
computational tools that address the types of problems that capture the imagination of 21st-century students. 
Examples could include LMIs, Sum of Squares (SOS) programs, and possibly the rudiments of MPC. 
Computational techniques such as least-squares (for system identification or other data-driven control) can be 
introduced in first-year curricula through Jupyter Notebooks or other such tools.

Incorporating Machine Learning: The rise of machine learning and artificial intelligence provides another 
opportunity to innovate control theory education. Machine learning is undoubtedly changing our modern 
engineered world, and students are expressing a strong demand for coursework that prepares them to be a 
part of this exciting future. Viewed as the process of building models from data using optimization, it is clear 
that machine learning is closely related to the field of system identification, which has been a cornerstone of 
control theory since the 1950s. There are several major opportunities for research at the intersection of control 
theory and machine learning, each of which motivates a new and compelling curriculum. “Learning for control” 
is a direct descendant of system identification, enabling the data-driven characterization of complex systems 
with challenging and often unstructured dynamics that cannot be easily expressed in a simple analytic form. 
This data-driven approach creates new challenges related to certifiability and guarantees for autonomous 
systems and other safety-critical applications. Finally, the field of reinforcement learning, which is at the 
intersection of control theory and machine learning, is one of the most rapidly growing areas of both fields and 
provides promising avenue for general artificial intelligence. Students are drawn to these new technologies, 
both for their ability to shape the future and the added value in an education that has core strength in both 
classical and modern approaches.

Adapting to Our Students: Raised in the era of computer games and smartphones, today’s students yearn 
to see control theory’s immediate connection to truly exciting applications. They want to see the big picture 
first before delving into the technical details. The traditional advice—“study mathematics and physics for a few 
years and then everything will fall into place”—simply does not work anymore. It requires attention spans that 
have been drastically shortened. Instead of bemoaning this new reality, we should adjust to it and adopt a new 
approach—perhaps completely reversing the instructional order.

When we fail to connect control principles to applications that excite students, we sell Control Systems short. 
Rather than showing how powerful these principles are and how important the field is to every aspect of our 
daily lives, we revert to the fallback position that control is “hidden technology”—a catchy motto that does not 
help the field to grow.
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Figure 6.1: Illustration of the Imaging Lab in EECS16A. The projector illuminates the object to image, and the 
reflected light is collected by the photodiode, which is connected to the Arduino. By using different illumination 
masks, students collect different linear combinations of pixels and can use matrix inversion to generate the image.

New and Meaningful Course Titles: An elective course called Control Systems may not be attractive. It 
may be preferable to use a name like Building Autonomous Systems. Autonomous systems are, in fact, more 
general and more ambitious control systems. They can have many objectives achievable under significant 
uncertainties. Depending on the specific institution’s programs, priorities, and community role, new names 
could be adopted for introductory courses in Control Systems.

To adapt to the new generation of students, we have to remember that a substantial proportion of college 
students now come from nontraditional (and in many cases underprivileged) communities. Even the word 
“engineering” may be unfamiliar, and social and educational priorities may be very different. We need to be 
sensitive to this fact in designing courses that introduce control principles and their use in addressing societal 
needs. While it is not clear if this trend is connected to specific geographical regions or societal structures, it 
is certainly well-documented and it calls for our increased attention.

As an example, a course called Designing Information Devices and Systems (EECS16AB) at the University 
of California, Berkeley1, takes a modular approach, as suggested later in Section 6.B.3. It also introduces 
linear algebra and control concepts through practical applications that motivate students to enter the 
field (e.g., medical imaging and tomography, GPS design, and brain-machine interfaces and robotics.) 
These applications allow students to see the real power of the mathematics that underlies control theory. 
Students actually build simplified demonstrations of these applications in hands-on hardware labs.  
Figure 6.1 illustrates the first lab that students are assigned in the course sequence—the medical imaging lab. 
Students project a series of masks on an object they wish to image. Through this, they can set up a system of 
linear equations (the unknown variables being the pixels that make up the image) as in a tomography setup, 
and solving this system reconstructs the image. This simplified version of tomography demonstrates how 
linear algebra can be used to model a system, while giving students a sense of what happens in real-world 
engineering contexts. Matrix inversion and the Gaussian elimination algorithm—which might otherwise be 
seen as cumbersome—can be also motivated through such practical applications.

Imaging Lab Setup
projectorObje

ct 
to 
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e

photodiode

Arduino/Launchpad

1 For more details, see https://eecs16a.org.

https://eecs16a.org
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6.B.2  Introducing a Control Systems Course Earlier,  
for Broader Audiences

Control is an important concept in many different fields ranging from biology and political science to economics 
and engineering. Thus, we need to significantly broaden the intended audience for introductory control classes, 
while maintaining the field’s integrity as a distinct area of learning.

One of the realizations that emerged from our international panel is that there are significant differences across 
educational systems around the world—in terms of class sizes, industry influence, required versus elective 
courses, etc. In some parts of the world, every engineering student has to take a course on control theory 
basics. In typical U.S. electrical engineering curricula, the first control course is often a junior or senior elective, 
while in mechanical engineering, control concepts are embedded in several undergraduate courses.

The broad applicability of control concepts is both a strength and a weakness. A course for a wide student 
audience could start with simple problems relying on computational models and introduce mathematical 
descriptions later. An introductory course need not delve into theoretical aspects—it can instead focus on 
practical tools and foundational concepts. Such curricular changes can attract new talent to the field, but they 
need to be implemented now, as they will take several years to have full impact.

Key Concepts to Emphasize: Perhaps the foremost concept in control is that of modeling. Models encapsulate 
what we know about any process of interest. They can be linear or nonlinear ODEs, PDEs, DES models such 
as automata and Petri nets, digital simulations, word descriptions, sets of data with rules of engagement, etc. 
Linear ODEs with constant coefficients represent the simplest mathematical dynamic models we have and can 
be used as key examples because we know a lot about them. It should be made clear that models are always 
approximations of real processes and that there will always be uncertainties in processes and environments 
which typically cannot be directly measured.

To effectively control the system’s behavior, we first need stability, so that when a system is perturbed (e.g., 
airplane in a gust of wind) it is able to return to its previous state. Along the same lines, adaptation is needed 
for a system to be responsive to large changes. The current definition of “adaptive control” is restricted to 
rather small changes. Adaptation needs to be taught in a more general sense, and it should be linked to failure 
diagnosis, control reconfiguration, machine learning, etc. Elements of learning theory are also an essential 
ingredient of modern Control Systems.

The most powerful concept involved in controlling a system with uncertainties is feedback. It is important to 
recognize that feedback transcends models. Feedback mechanisms in engineered systems (including vehicles, 
robotics, manufacturing, and chemical process control), biology, economics, politics, and the environment are 
ubiquitous and can be introduced with simple explanations and examples.

Key Methodologies: A Control Systems course for a broad audience should start with time domain 
approaches using state variable descriptions (e.g., state feedback approaches) that can also be used for time-
varying systems, discrete event systems, etc. Methodologies for systems described by ODEs with constant 
coefficients should continue to be taught, as should frequency domain approaches using transfer functions. It is 
important to emphasize the role that optimization plays in control theory, and it should be connected to powerful 
and popular methodologies like linear programming, dynamic programming, and linear quadratic regulation.



218

New methodologies for highly autonomous systems include CS/AI approaches. They may be conveniently 
described in terms of a hierarchical functional architecture, where to achieve higher autonomy we need to add 
higher layers of methodologies drawn from areas like planning and learning. However, it is important to clearly 
differentiate the role of control from that of learning.

A course for broad audiences should maximize the use of simulation—possibly including competitions that can 
stimulate student participation and creativity (e.g., see Figure 6.2). Physical experiments are desirable because 
they make a lasting impression and represent real-world uncertainties that simulations may not be able to 
capture. However, they are more expensive and need more maintenance. On the other hand, simulations 
are much more flexible and are able to represent a variety of situations (including large-scale systems that 
may not even exist yet) with increasing realism. It can be beneficial to have a publicly available collection of 
recommended simulations for particular cases (e.g., MATLAB and Simulink examples).

What would an updated introductory course look like? We envision a course that consists of a number of 
distinct educational modules as described next.

Figure 6.2: A proud first-year student showing off her final project for EECS16B at UC Berkeley: a voice-
controlled robot car. This project uses principal-components analysis to learn voice commands and pole 
placement for control of the car.

6.B.3  Modularizing the Teaching Experience  
(Short Modules, Instead of Courses)

The motivation for a modular approach to the design of an introductory course in control is based on the 
following facts:

• It will require significant effort from instructors to change the thrust of control courses. The free 
availability of modules on several basic topics—along with simulated examples and experiments—
would greatly facilitate the process of new course creation.

• Instructors who want to update introductory control courses cannot afford to wait for a new textbook. 
The process would be greatly facilitated by access to the CSS or IFAC websites, from which one 
could download well-designed modules of lecture material (with, at minimum, detailed summaries and 
selected definitions and methods), and of simulation (e.g., MATLAB-based) modules.

• Such control modules can be easily added onto existing courses on, e.g., robotics, communication, 
autonomous vehicles, or power systems.
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The quantity and depth of these modules will depend on the time allocated and the students’ background. 
Some thought needs to be put into the design of reasonably sized modules on certain topics. We believe 
that the CSS together with the IFAC should establish an Undergraduate Curriculum Committee (the IFAC 
may already have something along these lines). This Committee could review module submissions, certify  
a selected subset, and organize and recommend those that are certified.

In a prototype broad-appeal course, students would be introduced to general concepts such as fundamentals 
of systems modeling, sensors and actuators, and decision-making. The broader role of Systems Science, 
along with Control Systems, should be one of the ingredients of such a course. An award-winning module  
on the “Power of Feedback” could be used to spread the word to many other disciplines.

Possible modules could include:

• Feedback

• Models and uncertainty

• Mathematical models for linear, nonlinear, and hybrid (time-driven and event-driven) systems  
and simplifications (e.g., reduced models, abstractions, MATLAB-based computational models,  
and data-based models)

• Stability

• Adaptation and learning

• Data-driven control

• Applications (e.g., robotics, autonomous driving, smart grids)

• Important emerging topics such as systems of systems and security

The notion of modularizing basic Control Systems knowledge is also based on our increasing capacity for 
leveraging technology. For example, a student’s learning experience can be greatly enhanced by bringing 
experimentation to the student’s home through:

• The availability of small, inexpensive hardware

• The ability to share resources around the world in the form of virtual labs
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Education has experienced significant changes in the past two decades with the advent of massively open 
online courses (MOOCs), hybrid courses, and online educational material more generally. Since the COVID 
pandemic, these alternative educational formats have only strengthened their positions. There are several 
benefits to open and online course material. Online content can be modular, flexible, and tailored to specific 
sub-audiences, without requiring several duplicate courses for every combination of programming language, 
mathematical preparation, or application domain. They also provide hierarchical access to concepts, so that 
the student is able to obtain the most important ideas with the given time available, whether that is 10 minutes, 
one hour, one week, or an entire university-level course. Professors are, therefore, increasingly leveraging 
online content for their own classes. Online content also means that high-quality educational material is not 
just available to students at rich and premier institutions, thus democratizing education. Prime examples are 
YouTube channels youtube.com/@eigensteve and youtube.com/@ControlLectures (see Figure 6.3), which 
have international viewership, including students in rural areas and others that would not otherwise have 
access to first-rate lectures in our field. In addition to broadened access, online material is also useful for 
industry professionals who seek to improve their skills on their own time. Although the verdict is still not out 
on how MOOCs can productively co-exist with in-person education, it is critical that the control community 
continues to embrace and explore these alternative educational formats, both to provide the highest quality 
education possible and also to broaden access and participation beyond elite institutions.

Figure 6.3: Screenshot from Brian Douglas’s Control Lectures at engineeringmedia.com (left). Screenshot from 
Steven Brunton’s reinforcement learning lecture at youtube.com/@eigensteve (right).

6.C Creating Success Stories in Curriculum Changes

The three main recommendations presented above delineate the basic structure and content of a revised 
curriculum in Control Systems. Given the scope of this chapter, we have not attempted to address the question 
of how to teach the proposed content nor to provide examples of specific case studies that promote these 
recommendations. However, we refer the reader to at least one prior effort along these lines as described in 
“Report on the NSF/CSS Workshop on New Directions in Control Engineering Education,” IEEE Control Systems, 
pp. 53-58, October 1999. The reader is also pointed to a comprehensive paper in the 2023 Annual Review in 
Control [1], which includes three concrete examples of how the Control Systems curriculum can be brought 
into the 21st century in terms of i) The topics we teach and the emphasis different aspects are given, ii) How 
we manage delivery and student engagement, and iii) How we use laboratory exercises to support student 
development. The first example focuses on the holistic design of a large first course. The second looks at the 
expanding area of take-home laboratories and how these give students the opportunity to develop independent 
learning skills and a deeper understanding of core principles. The final case study addresses the role of virtual 
and remote laboratories in supporting inclusive learning.

http://youtube.com/@eigensteve
http://youtube.com/@ControlLectures
http://engineeringmedia.com
http://youtube.com/@eigensteve
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Finally, we point out that the IFAC TC9.4 on Control Education has worked on the definition of the content of a 
first (i.e., unique) control course (see [2]) and is currently working on the collection on existing web resources 
for those topics that have been considered to be more relevant.
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Recommendations

For young researchers: Introductory courses in Control Systems should emphasize the broader 
applicability of control. Such courses should be made available earlier in university curricula with the 
aim of teaching fundamental control concepts to a broader group of students. Given the scope of the 
field, modular organization of teaching material may be a more effective way to impart knowledge.

For funding agencies: Funding agencies can solicit proposals to develop modules for different 
control theory topics that are suitable for introductory courses.
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CHAPTER 7
Ethics, Fairness, and  
Regulatory Issues
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Ethics, Fairness, and Regulatory Issues

Abstract The true scope of control systems is significantly broader than what current and past research implies. 
Research objectives related to ethics, equity, fairness, and social responsibility have been conspicuously 
absent. This chapter outlines some key topics related to the ethical implications of autonomous systems, 
fairness and discrimination, and intersections with regulatory issues.

As the magnitude of the problems that our community seeks to address increases, the underlying domains 
and boundaries of the systems that we tackle necessarily expand as well. As we move from single systems to 
networks of systems where humans play an increasingly integral role—and from domain-specific performance 
metrics to much larger societal goals—we shift from a pure engineering perspective to a larger purview of 
science and technology. A whole range of emerging technologies (e.g., artificial intelligence, machine learning, 
pervasive sensing, internet of things, and nano-, neuro-, genetic-, and biotechnologies) are increasingly being 
incorporated into complex engineered systems (e.g., smart cities, autonomous vehicles, advanced weapon 
systems, and assistive devices). To ensure responsible innovation in these areas, researchers need to focus 
on ethical considerations. This advancement will be imperative for realizing a more sustainable and equitable 
future.

In this chapter, we outline some of the relevant areas where our community has begun to apply systems and 
control tools. Questions that have arisen in this context include:

• How do we develop principles and guidelines that assign specific duties and responsibilities  
to the various stages of research, design, development, and adoption of technologies?

• How do we ensure diversity, equity, and inclusion when designing and deploying these new 
technologies?

• How should we manage systems with unforeseen reactions and less than fully reliable outcomes?

• How do we assess and control the short-, medium-, and long-term impacts (physical, mental, 
biological, social, and ecological) on humans and the environment that arise from the application  
of emerging technologies, especially automation?

• How do we foster education and public awareness at all levels (including engineers, other scientists, 
and policymakers) towards the development of ethically aware and responsible products and services?

Anuradha M. Annaswamy, Munther Dahleh, Matin Jafarian,  
Françoise Lamnabhi-Lagarrigue, Mariana Netto 

The Control Systems community will play a vital role in designing technologies that respect human 
values, ensure ethics and fairness, and meet regulatory guidelines, even while safeguarding our 
environment and our natural resources.
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Recently, dedicated efforts have been undertaken within various research communities to define ethics 
guidelines. For instance, in the area of autonomous and intelligent systems, the report Ethically Aligned 
Design, published by the IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems (A/IS) [1] is 
based on three pillars that capture the anthropological, political, and technical aspects of ethics and design:

1. Universal human values

2. Political self-determination and data agency

3. Technical dependability

These pillars form the basis of eight general principles that are considered to be imperatives for the ethical 
design [2]:

i. Human Rights–A/IS shall be created and operated to respect, promote, and protect internationally 
recognized human rights.

ii. Well-Being–A/IS creators shall adopt increased human well-being as a primary success criterion  
for development.

iii. Data Agency–A/IS creators shall empower individuals with the ability to access and securely share 
their data, to maintain people’s capacity to have control over their identity.

iv. Effectiveness–A/IS creators and operators shall provide evidence of the effectiveness and fitness  
for purpose of A/IS.

v. Transparency–The basis of a particular A/IS decision should always be discoverable.

vi. Accountability–A/IS shall be created and operated to provide an unambiguous rationale for all 
decisions made.

vii. Awareness of Misuse–A/IS creators shall guard against all potential misuses and risks of A/IS  
in operation.

viii. Competence—A/IS creators shall specify and operators shall adhere to the knowledge and skill 
required for safe and effective operation.

This overall ethical framework also appears suited to a Control Systems approach to autonomous systems. 
We can aim to ensure that these principles are fulfilled at each stage of problem formulation and technology 
development.

7.A Ethics of Autonomous Systems
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7.B Ethics and Fairness

As technology progresses, its benefits do not equally reach all sectors of society. It has been argued that the 
development of technology has often been agnostic to or even detrimental to fairness and justice. As resources 
become scarce—especially in zero-sum situations—any computational framework that is developed should 
account for notions of bias, fairness, and justice. It is imperative that metrics that address these notions be 
interwoven into overall problem statements and computational solutions.

One salient line of investigation is the impact of automation on the global community [3, 4]. For instance, in 
[4], it is emphasized that “although advances in automation have been a key contributor to much of modern 
life and quality of life, they have also raised concerns in various respects. If the technology-society nexus 
was complicated before, with the emerging technologies of today a compounding of potential interplays is 
imminent. With self-driving cars, facial recognition systems, gene editing technology, quantum encryption 
devices, robotics systems, exoskeletons, and other new and emerging tech, the concerns go well beyond loss 
of employment and increasing inequality. The evolution of automation is rapidly resulting in, or exacerbating, 
major concerns about societal impacts, beyond the benefits.” In robotics circles, this issue is of obvious 
importance [5]. On a broader level, NSF initiatives in the U.S. have focused on the future of work at the human 
technology frontier [6]. All of these discussions become urgent given the explosive growth in AI and ML and 
their applications to physical and safety-critical infrastructures. A relevant framework in this context can be 
found in [7]. The above discussions raise a broader question of ethics, i.e., all aspects of the service that new 
technologies provide pertaining to fairness, equity, impartiality, and honesty [8]. The problems addressed by 
our community must therefore include an overall framework for ethics.

7.C Regulatory Issues

Any product that is designed to be used by society needs to be approved by a regulatory body. Whether in 
healthcare, robotics, energy, or transportation, every sector in every country around the world is subject to 
oversight from appropriate entities to ensure the safety of operators and the general public. As technologies 
advance and new products emerge, technology transitions must accommodate regulatory considerations. 
Early examples can be found in the area of medical devices, with the Food and Drug Administration (FDA) in 
the United States as the regulatory body that is responsible for assuring safety, efficacy, and security of smart 
medical devices (see Section 2.B of this document). At times, regulations evolve in parallel with technology. For 
example, the Vienna convention related to road traffic was amended after new Advanced Driving Assistance 
Systems (ADAS) were designed and deployed. This suggests that there could be a coevolution of technology 
and regulation leading to more efficient societal functioning. As our community’s research loci extend deeper 
into domains that involve societal needs, such intersections with regulatory issues are bound to increase. When 
technological advances are not merely incremental but represent major breakthroughs, these intersections 
become even more significant, requiring the research to inform and direct changes in policy. One example is 
the current paradigm shift in the power grid. Rapid decarbonization has necessitated significant conversations 
in the policy sector regarding electricity market structures, as well as ownerships, rights, and privileges for 
various emerging stakeholders [9].
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Across the board, safety has taken center stage as a pervasive system property. Whether in robotics, self-
driving vehicles, or any other application that is witnessing increased automation and societal integration, 
issues of safety are paramount. As such, safety standards have to be formulated, reformulated, or revisited 
to address this changing landscape. Safety standards are developed and maintained by the International 
Organization for Standardization (ISO). ISO 10218-1:2011, for instance, which prespecifies a safe distance 
between robots and their environment, has led to a more stringent standard, ISO/TS 15066:2016, so to support 
a collaborative environment between humans and robots. A similar effort is afoot in EU to introduce a uniform 
regulation across all EU nations for the operation of UAVs in civilian airspace. Regulatory concerns need to be 
carefully addressed in areas related to privacy and cybersecurity. Defining data property rights and addressing 
damage from breaches are just two of numerous issues that regulators need to focus on. It will be critical to 
establish guidelines for incentive design in order to proactively secure infrastructure across robotics, AI, and 
Industry 4.0.

In the context of ethics and fairness, particular regulations could be designed to ensure that no misuse of 
useful technology occurs. Along with the coevolution of technology and regulation, parallel developments in 
legal and technological pursuits are essential as well.

7.D Intersection With Control

Here are some important control-theoretic issues to consider:

1. Ethical Issues of Emerging Technologies: In addition to autonomy, another new technology is the 
reprogramming of cells (e.g., CRISPR), which poses serious ethical dilemmas. Reprogramming is an 
emerging area of intervention/control that is intertwined with learning on networks (as discussed in the 
bio section). While this area is fascinating and may enable us to eliminate serious genetic diseases, 
it brings out ethical issues in terms of what society could do with such technology. Much of that 
impact is not very well understood or appreciated. Many other domains raise ethical issues as well 
[4]: human enhancement technologies, emotional robotics (Figure 7.1), social media, cybersecurity 
and smart cities, neurotechnologies, synthetic biology, quantum technologies, nanotechnologies, 
autonomous weapons (Figure 7.2), And virtual and augmented reality. As pointed out in [1], an 
important general principle is that “the behavior of autonomous functions should be predictable to 
their operators, that those creating these technologies understand the implications of their work, that 
professional ethical codes are developed to appropriately address the development of autonomous 
systems and autonomous systems intended to cause harm, that designers not only take stands to 
ensure meaningful human control, but be proactive about providing quality situational awareness to 
operators and commanders using those systems.” Control systems have a major role to play in the 
understanding of areas like machine learning, control theory, and optimization. Ensuring robustness, 
precision, and predictability is key to addressing ethical issues.

2. Platforms and Intrinsic Bias: Platforms are typically predicated on designing a system that allows 
for interaction between multiple agents—and those are often designed following market principles. 
The online ad market has become one of the largest markets of the 21st century. Ad markets are 
basically auction mechanisms in which firms (companies) compete to get access to a particular user 
on the platform. People have observed that such systems can result in nontrivial bias. One case is 
the advertisement of STEM course. Data collected from such markets has demonstrated that women 
typically see many fewer STEM ads than men. Curiously, this is not due to companies favoring men, 
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but rather to the inability of those companies to win at auction given the fierce competition among 
retail firms targeting women. Similar bias has been demonstrated in other platforms including Zillow 
and other real estate apps.

3. Design of Public Signals: The field of control theory has addressed the question of designing private 
and public signals to nudge people to perform in a particular way. For example, it has been shown that 
the publication of COVID-19 infection data has impacted infection rates. As people see that numbers 
are rising, they exercise more restraint in interacting with others, resulting in negative feedback that 
mitigates spread. These public signals can sometimes be misrepresented and even result in exactly 
the opposite of the intended effect. The design of such signals, where they are published, and how 
they are presented to different groups, can all be critical in sending a consistent message to the 
public.

4. Unintended Consequences of Control/Decisions: Typically, control decisions are made to optimize 
certain performance objectives. We are quite familiar with trade-offs in performance objectives. 
However, it is possible to miss these trade-offs as humans interact with such systems. An example 
of such a problem is toll pricing. The implementation of transportation demand management through 
dynamic toll pricing (which is, in principle, an adaptive control problem) has long been recognized 
to potentially result in discrimination against low-income people. Such consequences may not be 
directly captured by a system’s performance objective.

Figure 7.1: New technologies in emotional 
robotics require collaboration with emotion 
researchers in psychology, neuroscience, 
and computer scientists [10] (reprinted 
with permission).

Figure 7.2: Control systems could bring complementary 
expertise in order to ensure meaningful human control 
of autonomous weapons systems [11]  (courtesy STM 
Photo).
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Recommendations

Chapter 2  Societal Drivers

2.A Climate Change Mitigation and Adaptation

Climate change is the gravest challenge facing humanity. The urgency and scale of the problem present 
tremendous opportunities for collaborative research on various topics from infrastructures and communities, 
energy, transportation, industry and manufacturing, and food and agriculture.

2.B Healthcare and Ensuring Quality of Life

The control systems community can positively impact society by tackling healthcare and quality-of-life 
challenges. From mitigating the risks of pandemics to leveraging the power of the medical internet of things, 
neuroengineering, and the closed-loop control of medical devices, tools derived from a control systems 
approach can enable breakthroughs on a large scale.

2.C Smart Infrastructure Systems

The scale and scope of overcoming the challenges in building smart infrastructure systems will require 
collaboration across multiple domains beyond control systems, ranging from other engineering disciplines to 
public policy and administration. Realistic testbeds are needed to produce critical datasets and validate new 
methodologies.

2.D The Sharing Economy

The economy of sharing should be on the radar of the control systems community. Engineers are often at the 
forefront of the battle to make more efficient devices while ignoring the stimulus these provide to economic 
consumption. Future business models will need to decouple economic growth from increased consumption. 
Control systems has much to offer in this context through the design of systems where access to resources is 
governed efficiently and justly.

2.E Resilience of Societal-Scale systems

To build resilience in next-generation societal infrastructures, comprehensive and contextual design approaches 
are needed, especially in the face of emerging technological, environmental, and societal risks. Foundational 
tools such as network system science, control and incentive mechanisms, and optimal resource allocation 
designs are important resources needed to achieve this goal.
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Chapter 3  Technological Trends

3.A AI and Big Data

As humans and machines become mingled in sociotechnical systems, it is essential to understand the interplay 
between control systems and machine learning, data science, reinforcement learning, and AI. Complexity 
measures, decision-making across multiple timescales, mitigating the sim-to-real gap, and developing 
analytically rigorous tools for robust performance are only a few examples of the myriad opportunities in this 
environment.

3.B Electrify Everything

The increased use of electrical energy to support human needs is a megatrend that will influence all market 
sectors. Optimally managing key energy assets requires coordination of the wide and disparate sources, sinks, 
and energy storage that operate over multiple spatial and temporal scales. Co-design, distributed decision-
making, computation over disparate networks, and accommodating adversarial actors are only some examples 
of many in which the control community can contribute.

3.C Engineering Biology

Engineering biology’s methods of designing, building, and testing engineered biological systems is critically 
relevant to improving human health, the economy, and the environment. The role of control systems is valuable 
in understanding and designing the emerging large-scale systems in this field that can operate in the presence 
of uncertainty.

3.D Robots in the Real World

In order to realize the full potential of robotics operating in the real world and have them achieve truly disruptive 
impact, they have to be made effective, resilient, and safe. This may require a focus on the higher levels in 
the control systems hierarchy, such as perception, situational awareness, autonomy, AI, and the use of digital 
twins.
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Chapter 4 Emerging Methodologies

4.A Learning and Data-Driven Control

Applications drive the fruitful interaction between machine learning and data-driven control. To fully exploit 
synergies between the two disciplines, the foundations of systems and control need to be revisited with a 
focus on the intersection between dynamics, scalability, learning, and architecture.

4.B Safety-Critical Systems

Ensuring intelligent and autonomous systems operate safely is critical to establishing human trust in these 
system and enabling their widespread deployment. A formal representation of safety is needed to provide 
a paradigm for synthesizing, testing, and guaranteeing safe behavior that can be implemented in real-world 
systems.

4.C Resilient Cyber-Physical Systems

New complex CPS are being created to increase performance for systems in mobility, energy, water, and other 
vital infrastructures. Designing these systems to be resilient to cyberattacks, extreme weather events, and 
other adverse events enable infrastructures to quickly detect and recover from these disruptions.

4.D Cyber-Physical-Human Systems

CPHS have diverse applications in healthcare, logistics, production, and infrastructure systems. Understanding 
the challenges of designing control systems to better interact with humans requires research into the derivation 
of control policies that are safe, robust, adaptive, and trustworthy as well as the computational modeling of 
humans as basis for model-based control.

4.E Control Architecture

Societal-scale control systems are composed of a variety of interacting elements, such as sensors, actuators, 
computers, communication devices, algorithms, software, and human-machine interfaces. Control architecture 
design principles play an important role in putting control technologies into real-world societal systems.
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Chapter 5  Technology Validation and Translation

The industrial ecosystem needs systems and control. Next-generation research validation can bridge the gap 
between academia and industry and enable the development of tech transfer and control technologies and 
products with high societal impact. 

Chapter 6  Education, Training, and Retraining

Because new mathematical models and methodologies are required for the control design of systems that 
dominate 21st-century technology, control systems curricula must stay current and applicable. 

On the university level, introductory control systems courses should emphasize and discuss the broader 
applicability of control. These courses should be introduced earlier in the curriculum and teach fundamental 
control concepts to a broader array of students. Modular organization of teaching material may be a more 
effective way to impart the basics of control systems.

Chapter 7  Ethics, Regulatory Issues, and Interoperability

Problems related to societal issues such as ethics, fairness, social responsibility, and justice are becoming 
more and more important as the digital way of life is becoming more and more common across the world 
population. Control systems has much to offer in this context through incorporation of elements that quantify 
these issues even as it focuses on analytical foundations of the underlying technology. New research is needed 
to explore this fascinating area as to how quantitative thinking, modeling, and analysis can be carried out for 
these people- and sociocentric challenges. 
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Epilogue

This road map is intended to guide a shift in how control systems can meet grand societal-scale challenges. 
The societal drivers, technological trends, emerging methodologies, and technology validation and 
translation explored in this document have captured this role. We identify paths that can be taken for 
control systems to effectively address the challenges facing global society.

This document is a product of a two-year effort by several community members. The topics explored in all 
chapters reflect our current understanding of some of the dominant directions our community may need 
to move in. While we have made every effort to avoid major gaps and omissions, there are bound to be 
certain methods and action items that we have missed. We encourage the community to spotlight these 
gaps in appropriate forums.

As mentioned elsewhere in the document, this road map is intended to provide strategic directions for 
the community, and elements of this road map may serve to form the core of the IEEE control systems 
community’s strategic plan. As we progress into the 21st century and the needs of society change, we 
expect new road maps to suitably evolve, address new methods, and embrace new tools and trends.
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Table 8.1: Authors and reviewers of the Control for Societal-Scale Challenges Roadmap: 2030 
(in alphabetical order).

CHAPTER FULL NAME AFFILIATION

CHAPTER 1

Anuradha M. Annaswamy Massachusetts Institute of Technology
Karl H. Johansson KTH Royal Institute of Technology
George J. Pappas University of Pennsylvania

CHAPTER 2

Section 2.A Saurabh Amin Massachusetts Institute of Technology
Margret Bauer HAW Hamburg
Aranya Chakrabortty North Carolina State University, US National  

Science Foundation
Fabrizio Dabbene Institute of Electronics, Computer and Telecommunication 

Engineering, National Research Council of Italy
Amritam Das KTH Royal Institute of Technology
Masayuki Fujita Tokyo Institute of Technology
Mario Garcia-Sanz Case Western Reserve University
Dennice Gayme Johns Hopkins University
Gabriela Hug ETH Zürich
Marija Ilić Massachusetts Institute of Technology
Pramod Khargonekar University of California, Irvine
Iven Mareels IBM
Kevin Moore Colorado School of Mines
Lucy Y. Pao University of Colorado Boulder
Akshay Rajhans Mathworks
Tariq Samad University of Minnesota
Jakob Stoustrup Aalborg University
Junaid Zafar Independent Engineering Consultant

Section 2.B Eyal Dassau Harvard University
Francis J. Doyle III Harvard University
Sarah Fay Massachusetts Institute of Technology
Anette Hosoi Massachusetts Institute of Technology
Dalton Jones Massachusetts Institute of Technology
Tommaso Menara University of California, San Diego
Timothy O’Leary University of Cambridge
Marcia K. O’Malley Rice University
Philip E. Paré Purdue University
Fabio Pasqualetti University of California, Riverside
Sri Sarma Johns Hopkins University
Rodolphe Sepulchre University of Cambridge
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CHAPTER FULL NAME AFFILIATION

Section 2.C Anuradha M. Annaswamy Massachusetts Institute of Technology
Carlos Canudas de Wit CNRS/GIPSA-Lab
Masayuki Fujita Tokyo Institute of Technology
Hideaki Ishii Tokyo Institute of Technology
Karl H. Johansson KTH Royal Institute of Technology
Dan Work Vanderbilt University

Section 2.D Anuradha M. Annaswamy Massachusetts Institute of Technology
Christos G. Cassandras Boston University
Robert Shorten Imperial College London

Section 2.E Andrew Alleyne University of Minnesota
Saurabh Amin Massachusetts Institute of Technology
Giacomo Como Politecnico di Torino
Johan Eker Lund University/Ericsson Research
Frederick Leve US Air Force Office of Scientific Research
Nikolai Matni University of Pennsylvania
George J. Pappas University of Pennsylvania
Thomas Parisini Imperial College London & University of Trieste
Henrik Sandberg KTH Royal Institute of Technology
Jacquelien Scherpen University of Groningen
Emma Tegling Lund University
Dawn Tilbury University of Michigan

Appendix 2.A Sarah Fay Massachusetts Institute of Technology
Anette Hosoi Massachusetts Institute of Technology
Dalton Jones Massachusetts Institute of Technology

Appendix 2.B Tommaso Menara University of California, San Diego
Timothy O’Leary University of Cambridge
Fabio Pasqualetti University of California, Riverside
Sri Sarma Johns Hopkins University
Rodolphe Sepulchre University of Cambridge
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CHAPTER FULL NAME AFFILIATION

CHAPTER 3

Section 3.A James Anderson Columbia University
John Baras University of Maryland
Mykel J. Kochenderfer Stanford University
Luca Schenato University of Padova

Section 3.B Andrew Alleyne University of Minnesota
Aranya Chakrabortty North Carolina State University, US National 

Science Foundation
Lucy Y. Pao University of Colorado Boulder
Thomas Parisini Imperial College London & University of Trieste
Jakob Stoustrup Aalborg University

Section 3.C Neda Bagheri University of Washington
Mustafa Khammash ETH Zürich
Richard Murray California Institute of Technology

Section 3.D Dimos V. Dimarogonas KTH Royal Institute of Technology
Tor Arne Johansen Norwegian University of Science and Technology
Karl H. Johansson KTH Royal Institute of Technology
Dawn Tilbury University of Michigan

CHAPTER 4

Section 4.A Florian Dörfler ETH Zürich
Na Li Harvard University
Nikolai Matni University of Pennsylvania
Lucy Y. Pao University of Colorado Boulder
Gireeja Ranade University of California, Berkeley
Anders Rantzer Lund University
Angela Schoellig TU Munich & University of Toronto
Claire J. Tomlin University of California, Berkeley
Melanie Zeilinger ETH Zürich

Section 4.B Aaron D. Ames California Institute of Technology
Mykel J. Kochenderfer Stanford University
Koushil Sreenath University of California, Berkeley
Paulo Tabuada University of California, Los Angeles
Claire J. Tomlin University of California, Berkeley

Section 4.C Carlos Canudas de Wit CNRS/GIPSA-Lab
Sandra Hirche TU Munich
Bruno Sinopoli Washington University in Saint Louis
Dan Work Vanderbilt University
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CHAPTER FULL NAME AFFILIATION

Section 4.D Aaron D. Ames California Institute of Technology
Françoise Lamnabhi-Lagarrigue CNRS
Angela Fontan KTH Royal Institute of Technology
Sandra Hirche TU Munich
Tariq Samad University of Minnesota

Section 4.E Aaron D. Ames California Institute of Technology
Marie Csete CEO of OkuloVision
John C. Doyle California Institute of Technology
Na Li Harvard University
Steven Low California Institute of Technology
Nikolai Matni University of Pennsylvania
Anders Rantzer Lund University

CHAPTER 5

Stefano Di Cairano Mitsubishi Electric Research Laboratories
Johan Eker Lund University/Ericsson Research
Sonia Martinez University of California, San Diego
Thomas Parisini Imperial College London & University of Trieste
Tariq Samad University of Minnesota

CHAPTER 6

Panos J. Antsaklis University of Notre Dame
Christos G. Cassandras Boston University
Florian Dörfler ETH Zürich
João P. Hespanha University of California, Santa Barbara
Gireeja Ranade University of California, Berkeley
J. Anthony Rossiter University of Sheffield
Steven Brunton University of Washington, Seattle

CHAPTER 7

Anuradha M. Annaswamy Massachusetts Institute of Technology
Munther Dahleh Massachusetts Institute of Technology
Matin Jafarian Delft University of Technology
Françoise Lamnabhi-Lagarrigue CNRS

REVIEWERS

Thierry-Marie Guerra Université Polytechnique Hauts-de-France
Mariana Netto Université Gustave Eiffel
Benoît Lung University of Lorraine
Tiago Roux Oliveira University of Rio de Janeiro
Wei Ren University of California, Riverside
Antonio Visioli University of Brescia
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Table 8.2: Panel leaders and panelists of the 2021 IEEE CSS Workshop on Control for Societal-Scale 
Challenges (https://sites.google.com/view/ieee-css-societal-challenges21/home) held virtually on  
June 4–5, 2021.

ROLE FULL NAME AFFILIATION

SAFETY CRITICAL AUTONOMOUS SYSTEMS WITH ML

Panel Leaders Angela Schoellig TU Munich & University of Toronto
Claire J. Tomlin University of California, Berkeley

Panelists Dimos V. Dimarogonas KTH Royal Institute of Technology
Anca Dragan University of California, Berkeley
Jonathan P. How Massachusetts Institute of Technology
Mykel J. Kochenderfer Stanford University
Andreas Krause ETH Zürich
Sandeep Neema Vanderbilt University
Koushil Sreenath University of California, Berkeley
Paulo Tabuada University of California, Los Angeles
Melanie Zeilinger ETH Zürich

RESILIENT INFRASTRUCTURE SYSTEMS WITH AI AND IOT

Panel Leaders Carlos Canudas de Wit CNRS/GIPSA-Lab
Dan Work Vanderbilt University

Panelists Saurabh Amin Massachusetts Institute of Technology
Bassam Bamieh University of California, Santa Barbara
Giacomo Como Politecnico di Torino
Mario di Bernardo University of Naples Federico II
Marco Pavone Stanford University
Lillian Ratliff University of Washington
Henrik Sandberg KTH Royal Institute of Technology
Jeff Shamma University of Illinois Urbana-Champaign

EDUCATION AND TRAINING

Panel Leaders Christos G. Cassandras Boston University
João P. Hespanha University of California, Santa Barbara

Panelists Frank Allgöwer University of Stuttgart
Panos J. Antsaklis University of Notre Dame
Florian Dörfler ETH Zürich
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Glossary

adaptation The process by which a control system 
makes self-adjustments, in the form of parameter 
estimation, and uses the estimates to make relevant 
decisions

agrivoltaics The simultaneous use of land areas for 
agriculture and photovoltaic power generation

architecture A framework that interconnects one 
or more elements or components so as to exhibit 
advanced functionalities

artificial intelligence The development of machines 
that mimic human intelligence (e.g., languages, 
perception, decision)

artificial pancreas An artificial system that mimics 
how a healthy pancreas controls blood glucose

artificial photosynthesis A chemical process that 
mimics the natural process of photosynthesis

automated anesthesia A system in which a controller 
adjusts the flow of an anesthetic drug to achieve the 
desired brain state

autonomy The process by which self-governing 
decisions are made in a system based on data,  
self-monitoring, and feedback

autotuning The process by which parameters 
are self-adjusted based on a criterion to improve 
performance; typically used for tuning PID gains

benchmarks Examples or cases used to evaluate 
and compare methods and best practices

bioengineering The application of engineering 
principles to biological and biomedical applications 

biological networks Interconnections of biological 
entities such as genetic or metabolic networks 

biomolecular control systems Control systems 
that regulate biological systems

carbon capture The trapping of carbon dioxide 
emissions and their storage in deep underground 
geological formations

carbon markets Systems in which carbon credits 
are bought and sold

cardiac-assist devices Electromechanical devices 
for assisting circulation

climate change Long-term shifts in temperatures 
and weather patterns, mainly driven over the last 200 
years by human activities

climate change adaptation and mitigation How 
to protect people and places by making them less 
vulnerable to the impacts of climate change and how 
to reduce or prevent emission of greenhouse gases

control co-design Integrating control design with 
other system design aspects (hardware, software, 
etc.)

control engineering The design and analysis of 
feedback systems that ensure safety, stability, and 
robustness properties 

control systems Analysis and synthesis of the 
process by which a physical system is controlled using 
data obtained using measurements, computations, 
and other exogenous information to lead to system 
properties such as stability, optimality, robustness, 
and tracking

control systems theory The theoretical framework 
that provides analytical underpinnings for a physical 
system that is controlled using data obtained using 
measurements, computations, and other exogenous 
information; this framework allows the derivation of 
theoretical guarantees of desired system properties 
such as stability, optimality, robustness, and tracking
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controller/architecture co-design The joint 
design of a control system and the infrastructure 
(e.g., communication, actuation, sensing, and 
computation) needed to implement it

cooperative control Control of a system with 
multiple agents aiming for a common goal critical 
infrastructure systems 

critical infrastructures The basic physical and 
organizational structures and facilities critical for the 
operation of a society or enterprise

critical infrastructure systems Systems essential 
for the functioning of a society or economy

cyber-physical-human systems An interconnection 
of physical systems, computational devices, and 
humans, with varied and complex interactions

decarbonization The process of reducing carbon 
dioxide emissions

decision support systems Information systems that 
support decision-making activities

deep brain stimulation A neurosurgical procedure 
sending electrical impulses through implanted 
electrodes to specific targets in the brain

demand response The opportunity for consumers 
to shift their electricity usage during peak periods in 
response to time-varying rates

distributed control Control algorithms distributed 
across systems without any central coordination

distributed learning Learning over distributed or 
networked systems where data are not centralized

distributed optimization Optimization performed 
by a set of interconnected agents updating their 
variables to optimize a global cost

ecosystem engagement The process of getting 
stakeholders and networks of peers to interact and 
share in value creation

education modules A compilation of lectures with 
supporting tools of videos and quizzes that is a 
comprehensive exposition of a particular method, 
concept, or architecture

electricity markets Systems that facilitate the 
participants to sell and buy, and thereby exchange, 
electricity

energy efficient computing Handling limiting 
energy resources in computing systems, from large 
data centers to small embedded systems

energy efficient machine learning Handling limiting 
energy resources when training machine learning 
models

environmental monitoring The process of observing 
the environment and characterizing its quality

exploration and exploitation Exploration is the 
process of collecting more data and improving 
the underlying control systems; exploitation is the 
process of making a decision based on the existing 
data with the expectation that it may be optimal

fairness Ensuring impartial access and impact of 
engineering systems or approaches

geoengineering The engineering of carbon dioxide 
removal and solar radiation management applied at 
a planetary scale (also called climate engineering)

hierarchical control A type of layering in control 
architectures in which “higher” layers (e.g., planning) 
send commands to “lower” layers (e.g., control)

human-in-the-loop Systems that interact with 
humans in a feedback loop

human-in-the-loop control A control system where 
the feedback includes a combination of sensors, 
computation, communication, control, and humans, 
where humans can provide any of the functionalities 
in the combination

human-robot interaction Robots interacting with or 
operating in the proximity of humans
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innovation and technology transfer The process 
of bringing research results to the market or general 
society

interdependent infrastructures A feature of modern 
infrastructures linked by multiple connections, 
feedback loops, and other dependencies (e.g., 
interconnection of the power grid with transport and 
information networks)

irrigation management The management of water 
distribution resources for agricultural crops

layering A ubiquitous design pattern in complex 
engineered systems that decomposes a system’s 
behavior into well-defined modules (e.g., planning 
and control)

learning The process by which uncertainties in 
a system are learned so as to improve the overall 
performance

machine learning Approaches that develop 
prediction models from input–output data

mechanism design The process by which 
incentives or other mechanisms are designed  
so as to meet a certain objective

medical internet of things Medical devices and 
applications that connect to healthcare IT systems

metabolic engineering Engineering approaches  
for optimizing genetic and regulatory processes 
within cells

microgrids A local electric grid able to act in an 
island mode independent of the main grid

modularity of biological components Engineering 
approaches for understanding properties of 
compositions of biological components given 
properties of the individual components

multi-rate control A control system in which different 
layers operate at different timescales

multiscale modeling When multiple models at 
different scales are used to simultaneously de- scribe 
a system

negative emissions technologies Technologies for 
the absorption and storage of greenhouse gases

network resilience The ability of a network to 
maintain an acceptable level of service despite  
faults and other challenges to normal operation

neural networks Brain-inspired mathematical 
networks of neuron models

optimization (of models/parameters) Mathematical 
and computational approaches for choosing optimal 
parameters given constraints

perception-based planning and control Planning 
and control approaches that heavily rely on vision 
and perception as a sensor

personalized medicine The use of an individual’s 
genetic profile for prevention, diagnosis, and 
treatment of disease

physics-informed learning Machine learning 
approaches that are informed or constrained by 
physical laws

quality of life An individual’s perception of their 
position in life in the context of the culture and value 
systems in which they live

reinforcement learning A sequential learning 
approach for a reward-maximizing agent interacting 
with an unknown environment

renewable fuels Energy resources that replenish 
naturally over time

resilience The property of a system to withstand 
large anomalies and to restore itself to at least a 
reduced level of functionality

restoration The property of a system to return as 
closely possible to its original state following an 
anomaly

risk assessment Identifying and analyzing the 
potential for negative events and judging tolerance 
for such events

robotics The design and programming of robots for 
personal or automation tasks
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robust AI Learning that is robust to various data 
perturbations

robust control Methodology for controlling systems 
with uncertain models

robustness The property of a system by which it can 
withstand perturbations without any adaptation

safety A fundamental property of a system wherein 
there is a high emphasis on satisfactory behavior 
with stringent specifications

safety control Control methodology that ensures 
safety of system behavior

safety-critical A property of a system where any 
failure may result in a significant impact such as 
fatalities and injuries

safety-preserving resilience The property of a 
system to withstand large anomalies and return as 
closely possible to its original state while ensuring 
system safety

sharing economy Systems built around the sharing 
of resources by renting and borrowing rather than 
buying and owning

smart agriculture The integration of digital 
technologies and robots for sustainable agricultural 
productivity

smart mobility Intelligent networks integrating 
various modes of transport and technology

smart power grid An electric power grid with smart 
sensing, distribution, and adaptation in response to 
varying energy supply and demand

smart society A human-centered society that aims 
to solve societal problems through systems that 
highly integrate cyber and physical space

smart water The integration of advanced 
technologies for the management and operation of 
water distribution networks

social contract An implicit agreement among the 
members of a society defining the rights and duties 
of each member

socially responsible automation Automation that 
incorporates social considerations in design (e.g., 
safety, privacy, fairness)

societal-scale cyber-physical systems Systems 
that integrate cyber and physical parts through 
computation and communication to add new 
capabilities to physical systems of great societal 
importance

stochastic modeling Mathematical and 
computational biological models that capture 
probabilistic behavior

synthetic biology Engineering approaches for 
building functional systems from biological sub- 
strates

systems biology Engineering approaches for 
understanding biological systems

technological convergence The process of 
originally unrelated technologies becoming more 
closely related or even unified as they develop

testbeds Platforms for testing new scientific theories, 
methods, tools, and technologies

transactive control Distributed control strategy 
based on the engagement of self-interested agents 
interacting through a dynamic market mechanism, 
such as demand response for power systems

transdisciplinary research Research that integrates 
knowledge across academic disciplines and with 
nonacademic stakeholders to address societal 
challenges

uncertainty modeling Modeling what we do not 
know about the underlying systems

vehicle-to-grid A system enabling electric vehicles 
to sell energy to the electric grid 
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