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Abstract: “The Intersection between Machine Learning & GNC”
CCTA TCAC Workshop. Multi-Vehicle and Assured Autonomous Control for Aerospace Applications

W As machine learning methods become more prevalent in guidance, navigation, controls, and autonomy (GNCE&A), problems of
a dynamical nature will increasingly need to be considered. The dynamical nature of these problems may include regressors
that are time-varying, necessitating new algorithms in machine learning approaches as well as real-time dectsion making in
the presence of uncertainties using adaptive control approaches. Problems of stability, fast learning with analytical
guarantees, and constrained nonlinear systems have to be simultaneously addressed. Some of these problems have to be
addressed from a machine learning perspective, while others have to be dealt with using adaptive control approaches.
Throughout, analytical guarantees must be considered in order to apply machine learning for decision making in real-time.
These theoretical guarantees are necessary to address advanced guidance and control challenges for next generation aerial
vehicles. Recently, under the DARPA AlphaDog fight Trials (ADT) program for within-visual-range dogfighting, Aurora
Flight Sciences developed competitive Al agents that are robust, trustable and capable. The approach combined reinforcement
and machine learning, expert-systems and rule-based methods, and principles from guidance, navigation and control (GNC).
Holistically fusing these domains enabled the Al to incorporate domain knowledge and results from traditional disciplines
while still leveraging the latest tools from machine/reinforcement learning.

— Dr. Heather Hussain, BRST GNCSEA (Presenter)

— Dr. Joseph Gaudio, AF'S Autonomy Research Drvision (Presenter)

— Dr. James Paduano, AF'S Autonomy Tech Area Lead

— Anubhav Guha, MIT PhD Candz’date,lgrz'or AFS Autonomy Research Division (Presenter)
— John Piotti, AF'S Autonomy Research Drvision

— Bradley Lan, Morse Corp. GNC, prior AF'S Autonomy Research Division
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Outline
CCTA TCAC Workshop: Multi-Vehicle and Assured Autonomous Control for Aerospace Applications

m Introduction
— Control Challenges for Future Air Vehicle Platforms

m The intersection between Machine Learning & Adaptation (Dr. Joseph Gaudio)
— Common Parameter Update Laws and Error Models
— Common Modifications to Parameter Update Laws
— Common Concepts and Tools

m Deep Reinforcement Learning Methods for Air-to-Air Combat & Control (Anubhav Guha)
— Timeline of Artificial Intelligence in Games
— DARPA Alpha Dogfight Trials
— Key Components of Reinforcement Learning
— Curriculum for Reinforcement Learning
— Final Results from AlphaDogfight Trials
— Key Takeaways

® Summary & Questions

Copyright © 2019 Boeing. All rights reserved 4
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Introduction
Motivation for Adaptive and Learning Based Systems

m Vith the advent of each next generation technology, demands for a rapidly reconfigurable control system yielding invariant performance under
increasingly unknown or widely varying operating conditions becomes crucial.

— eg. H Zgh S[)eed pld?fOT m challenges [1] “HIFiRE 6: Overview and Status Update 2015,” 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2015. [27] Robust and
Adaptive Control for High Speed Vehicles, ACGSC Meeting 119, Dayton, OH, 2017

m Adaptive control theory is a mature control discipline that allows for real-time compensation of parametric uncertainties and changes in system
dynamics

— Premise: Adapt system parameters to provide a vehicle response that more closely follows the reference model

. . v
s ! Uncertainty i L o
a i - i e e
— . i | Parametric ﬂor":iiirgg‘;ggs(n) ! — ] w
m1 —> 1| — Unknown stifiness, e ! i ma R
Y ; Control effectiveness Dynamics ! [ o Y
[my| <m Moo l ____________________________ s
0; = —vieixy
Adaptive PARAMETER ESTIMATE Aircraft
Controller CONTROL INPUT Dynamics
u

Online Information

m Machine Learning, a largely data driven process where learning typically occurs offline, is also key in addressing the control challenges of future
autonomous systems.

Universal Approximation Theorem of Neural Networks Machine Learn]ng
[ . ) - o [ o
z .‘ y=fz) [—Y / 4
Newrl Network e — |, e i
- . i = > O L1} L1
T —F( '.: < > y:ZN: dlw z+b)+d, »
) Fore>0,3(N,w")=|y" —yl<eVze X o b i

m Objective: Obtaining efficient, stable, & robust learning systems for GNC-enabled autonomy.

Copyright © 2019 Boeing. All rights reserved
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Intersection between Machine Learni’hé & Adaptation

Dr. Joseph Gaudio, AF'S Wﬁeseamﬁ Division
(presentation based on P@ sts, prior to joining AF'S)
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Online/Adaptive Learning in Machine Learning Problems

> Most machine learning algorithms assume features are constant

> Need for algorithms which explicitly account for feature time
variation (step changes, continuously varying)

> Extend learning algorithms to online sequential decision making
systems with limited computation

> Increased need for continual/lifelong learning systems

> Standard machine learning systems are increasingly becoming
feedback systems

> Requirement for provably stable algorithms

Employ techniques from adaptive control theory to enable
safe and fast learning for systems with time-varying
regressors

Copyright © 2019 Boeing. All rights reserved.
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Training Neural Networks
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Image Classification

https://www.cs.toronto.edu/~kriz/cifar.html
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Online/Adaptive Learning and Control in Dynamical Systems  |ilii

> Adaptive identification and control is becoming increasingly
prevalent in society (autonomous vehicles, robotics)

> Dynamics of the learning process need to be analyzed alongside
plant dynamics

> Physical systems have input constraints which need to be
accounted for during the learning process

> Long-term learning enabled by parameter convergence

> Requirement for provably stable algorithms

Employ techniques inspired by machine learning within an
adaptive control framework to enable safe, fast learning and
control in dynamical systems

Copyright © 2019 Boeing. All rights reserved.

Autonomous Vehicles
https://spectrum.ieee.org/image/MzIzMjg2NA. jpeg



@!aflzva

Intersection between Machine Learning& Adaptation:
Common Parameter Update Laws-and Error Models
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Linear Regression Models

Known Unknown

y :output

o : feature, regressor

Model y = o'

Prediction 7§ = o' ¢

Goal: Learn 0

Squared error (loss):

| .
L(0) = 5llo" 0 — ylI3

For large systems we can employ an iterative method: step size is 9

Ops1 <= 0 — VoL (0)
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Control

Outputs can be related to features/data through a dynamical system

(./ = (Y]_((_'). f. €y ) T = f]_ (7 . U‘)

u=Csh(0.0.e,) y = fola.0 . u)

Model Structure ) Control Input )
o Adaptive m g Dynamical

, —|  Controller — System
Online Information Parameter Estimate

==
6 7

e,. 0. Tracking Error, Real-Time Data w,x,y. Input, State, Output




(L soEING Boeing Research & Technology

The Two Errors in Learning and Adaptation Based Systems i

Model Structure

Learning

Online Data Model

Uncertain
System

Parameter Estimation Error : 6 = ) — (| mm— Directly adjustable, not measurablel

Output Prediction Error: e, =9y —y (—l Measurable, not directly adjustablel

Current Research: Fast Convergence of Both Errors

Copyright © 2019 Boeing. All rights reserved
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A Comparison of Different Learning Examples ir
Linear Regression Neural Networks Parameter Estimation

y= ol y= f(0/",0) = Ar + b(u + N )
g=o¢l0 g = f(0,0) b= A2+ blu+ oT6)

€y =Y —yY €y =Y —Y e =1 — X

1 . . _ | B _ 5
L=c[o"0—yl3 L=3|f(0,9) - yll3

0 = —VL(0) = —0e, 0 = —yVL(0) 0 = —~ge’ Pb

Stability Stability Stability

)

| : o1, N
0 —0"I3 V=gl =01z + ¢

—e' Pe
5 ¢

Similar Parameter Update Laws
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Adaptive Control: Error Models

Two classes of error models

0, .
—_— ' W (s)

Output error: e, =y — 1y, Parameter error: 0 =0 — (7" : True parameter)

Adjust A so that ey (t) =0 ] 3

Choose a cost function J(6(t)) = (1/2
B(t) = —7 Vo (0(1)) = —7o(t)e, (1)

Same adaptive law for stricly positive real W (s)HEIEIA]

Many common update law modifications and concepts between fields!®!

[1] K. 5. Narendra and A. M. Annaswamy (1989). Srable Adaptive Systems. (out of print). NJ: Prentice-Hall, Inc.

[2] 5. Sastry and M. Bodson (1989). Adaprive Control: Stability, Convergence and Robustness. Prentice-Hall.

[3] K. J. Astrém and B. Wittenmark (1905). Adaprive Control: Second Edition. Addison-Wesley Publishing Company.
[4] P. A. loannou and J. Sun (1996). Robusr Adaprive Control. PTR Prentice-Hall

5] J. E. Gaudio, T. E. Gibson, A. M. Annaswamy, M. A. Bolender, and E. Lavretsky (2019). "“Connections Between Adaptive Control and Optimization in Machine Learning”. 58th IEEE Conference on Decision and Control {CDC),
ntefmatjonal Colfébenoeon Machinedsearning (ICML ), Weorkshop on Adaptive & Multitask Learning.
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Machine Learning: Error Models

Underlying model: yr = f(or,0/"), Predicted output: . = f(ok. k)
Determine parameter optimization rule:

Output error €, 1. = Y. — Ui

Construct loss function L(0};)

Parameter optimization rulel/21BI4][5].

Ors1 =0k — VoL (0k)

[1] R. O. Duda, P. E. Hart, and D. G. Stork (2001). Pattern Classification, 2nd Edition. John Wiley & Sons.

[2] C. M. Bishop (2006). Pattern Recognition and Machine Learning. Springer,

[3] T. Hastie, R. Tibshirani, and J. Friedman (2000). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
[4] B. Efron and T. Hastie (2016). Computer Age Statistical Inference: Algorithms, Evidence and Data Science. Cambridge University Press

[5] L Goodfellow ) (BengiodlandhA. rCourville (2016). Deep Learning. MIT Press.
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Intersection between Machine Learning& Adaptation:
Common Modifications to Parameter Update Laws
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Robust Adaptive Control

|

@ €y D
ﬁ- ﬁ-—

Modeling error, time-variations, latencies are always present

Update law based on stability (Lyapunov function V')

V =e? + \bl,\fp
V = 2a,,e? + 2b,ed
_lf-: (2|am ‘ ‘f| T 2 bp‘dmr'z.r)

Modifications are needed
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Adaptive Control: Modification to Account for Disturbances  |l]ir

Modify update law to incorporate the effect of d:
0(t) = =7 [VoL(0(t)) + aG(0(t). e, (1))

o > (0: scaling parameter
Different choices of G suggested inlt[2:
o-modification: G =/

e-modification: G = ||e,||0

Leads to V' < 0 outside of D, a compact set

‘\_
T

Region where V < 0

[1] P. A loannou and P. V. Kokotovic (1984). “Robust Redesign of Adaptive Control”. IEEE Transactions on Automatic Control 29.3, pp. 202-211

[2] KoSrMaréndfd afdefoghl Apnaswamye(1987a). “A New Adaptive Law for Robust Adaptation Without Persistent Excitation”. IEEE Transactions on Automatic Control 32.2, pp. 134-145.
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Machine Learning: Regularization

Change loss function to avoid overfitting to noise:

L(H) = L(0) + oR(0)

o > 0: Lagrange multiplier

Leads to “regularized follow the leader” algorithml!!:
‘()ff+'l = ;. — Yk [V(;L(U;t) + UVUR((),{;)]

Choice of R:
(> regularization (ridge regression): R = (1/2)]|0||3 (coincides with the o-modification!?)

(1 regularization (lasso): with R = ||#||1 (induces sparsity®])

[1] E. Hazan (2016). “Introduction to Online Convex Optimization”. Foundations and Trends in Optimization 2.3-4, pp. 157-325.

[2] P. A loannou and P. V. Kokotovic (1984). “Robust Redesign of Adaptive Control”. IEEE Transactions on Automatic Control 29.3, pp. 202-211

[3] L Goodfellow) ) (BengiodlandhA. rCourville (2016). Deep Learning. MIT Press.
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Adaptive Control: Deadzone Modification

Introduce “dead zone" [l
'D(f"y) > dg + €
D(ey) < dp+ €

Common choice: D = ||e,||
V <in D¢

[1] BoBviBetérsonl anddncSANarendrad1982). “Bounded Error Adaptive Control”. IEEE Transactions on Automatic Control 27.6, pp. 1161-1168
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Machine Learning: Early Stopping

Training often stopped early to counter overfitting
Use multiple data sets and stop the parameter update process when loss begins to increasel!]
Needed for training neural networks due to their large number of parameters!?

Can act as regularizationm

High Bias Low Bias

LLow Variance High Variance

Test Sample

/

-
S
H
=
2
=
2
°
o
=
o,

L4

Training Sample

High

[1] L. Prechelt (1998). “Automatic early stopping using cross validation: quantifying the criteria”. Neural Networks 11.4, pp. 761-767.

[2] T. Hastie, R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer; C. M. Bishop (2006). Pattern Recognition and Machine Learning. Springer; B. Efron and T. Hastie
(2016). Computer Age Statistical Inference: Algorithms, Evidence and Data Science. Cambridge University Press; |. Goodfellow, Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press.

[3] dcSjobergtandl . Bhjung (1995)s “Overtfaining, regularization and searching for a minimum, with application to neural networks”. International Journal of Control 62.6, pp. 1391-1407.
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Adaptive Control: Projection

Compact region for the parameters ¢
During the learning process the parameters are not allowed to leave the region

Robustness to disturbances and unmodeled dynamicsm[z] [3]

Modify update law:

62 —p? _ |
(0. ¢ iy i € Qi NG > 0
Pro-l(()! ’ (3.?) — ?:.111:1_,\;_—85.—““,:\._ g? ¢ E !’ :Q; >
Gis otherwise
Q;HGX 9?”(?):

[1] G. Kreisselmeier and K. 5. Narendra (1982). “Stable Model Reference Adaptive Control in the Presence of Bounded Disturbances”. IEEE Transactions on Automatic Control 27.6, pp. 1160-1175.
[2] E. Lavretsky, T. E. Gibson, and A. M. Annaswamy (2012). “Projection Operator in Adaptive Systems” . arXiv preprint arXiv:1112.4232.

[3] HogrHussair0{ 204F)0¢ " Robust Adaptive Control in the Presence of Unmodeled Dynamics”. PhD thesis. MIT.
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Machine Learning: Projection

Projection operation which finds the point in a convex set which is closest to a specified point:

[lo(f) £ argmin||d — 6|

e
Employed in the update sequence“][z] 31141151

Or+1 = 0r — v VoL(0)), Op+1 = Ho(Oki1)

[1] M. Zinkevich (2003). “Online Convex Programming and Generalized Infinitesimal Gradient Ascent”. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 928-036.
[2] E. Hazan, A. Agarwal, and 5. Kale (2007). “Logarithmic regret algorithms for online convex optimization”. Machine Learning 69.2-3, pp. 160-192.

[3] E. Hazan, A. Rakhlin, and P. L. Bartlett (2008). “Adaptive Online Gradient Descent”. In: Advances in Neural Information Processing Systems 20. Curran Associates, Inc., pp. 65-72.

[4] E. Hazan (2016). “Introduction to Online Convex Optimization”. Foundations and Trends in Optimization 2.3-4, pp. 157-325.

[5] SoBubgcka( 2015 RoLContéxi Pptimization: Algorithms and Complexity”. Foundations and Trends in Machine Learning 8.3-4, pp. 231-35T.
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Adaptive Control: Adaptive Gains and Stepsizes

e, (t.7) =0T ()o(T), T < t adjust 6 so th, e (t.7)dr is minimized:

: .t
0= — / e, (t.T)o(T)dr

* t[]'

Uses all available data, need to use forgetting factor: weight with exp{—Ap(t — 7)}
Leads to a RLS type of update law!H2113]:

O(t) = =T (t)o(t)ey (t)
1 ' @ c;JT .
l(f) = {/\[I ( ) - {Tf(f}(t)ru) ’ HI (f)” < Fma}:

0. otherwise

Ar > 0 is a forgetting factor and N'(t) = (1 + po! (t)o(t)) is a normalizing signal

[1] G. Kreisselmeier (1977). “Adaptive Observers with Exponential Rate of Convergence”. IEEE Transactions on Automatic Controf 22.1, pp. 2-8.

[2] K. 5. Narendra and A. M. Annaswamy (1989). Stable Adaptive Systems. (out of print). NJ: Prentice-Hall, Inc.

[3] Pohyrlganfiol) andkiSun{ 1996)cRobust Adaprive Control. PTR Prentice-Hall
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Machine Learning: Adaptive Gains and Stepsizes

Adaptive step size methods!H2IB4] have seen widespread use in machine learning
Helps handle sparse and small gradients by adjusting the step size as a function of gradients

A common update law:

7 : >1/2 : a
9;‘.4_1 :9;1.— f,.k.??lgl./l’#/ . H!\-—l—l = H@(‘%c—kl)
Normalization by gradient as compared to normalization by regressor

Vi1

Projected gradient descent
ADAGRAD . el + diag(Zf:l i ® gi)
ADAM B1) S B g | (1 — Bo)diag(Xh_, 850 @ i)

[1] J. Duchi. E. Hazan, and Y. Singer (2011). “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”. Journal of Machine Learning Research 12, pp. 2121-2159
[2] M. D. Zeiler (2012). "ADADELTA: an adaptive learning rate method". arXiv preprint arXiv:1212.5701.
[3] D. P. Kingma and 1. L. Ba (2017). “Adam: A Method for Stochastic Optimization” . arXiv preprint arXiv:1412 6980

(4] SodyReddi, 811K ale:iand 51 Kumard2048). “On the Convergence of Adam and Beyond”. In: International Conference on Learning Representations
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Intersection between Machine Learning &Adaptation:
Common Concepts and Tools
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Adaptive Control: Persistent Excitation

Persistent Excitation of ¢: R(¢) = ":H o(T)o! (T)dT > al

¢ can be periodiclll, e.g. &(t) = > a;sinw;t
The PE condition corresponds to certain spectral conditions being satisfied by the regressorl?
Deterministic and stochastic cases have been considered!?! S(w)

PE condition = perfect learning

> Exponential convergence rates

[l] A. P. Morgan and K. S. Narendra (1977). “On the Uniform Asymptotic Stability of Certain Linear Monautonomous Differential Equations”. SIAM Journal on Control and Optimization 15.1, pp. 5-24.

[2] S. Boyd and S. Sastry (1983). “On parameter convergence in adaptive control”. Systems & Control Letters 3.6, pp. 311-319; S. Boyd and 5. 5. Sastry (1086). “Necessary and Sufficient Conditions for Parameter Convergence in Adaptive
Control”. Automatica 22.6, pp. 620-630.

[3] G. C. Goodwin and K. 5. Sin (1984). Adaptive Filtering Prediction and Control. Prentice Hall; B. D. Anderson and C. Johnson (1982). “Exponential Convergence of Adaptive ldentification and Control Algorithms”. Automatica 18.1,
pp. 1-13; K. 5. Narendra and A. M. Annaswamy (1986). “Robust Adaptive Control in the Presence of Bounded Disturbances”. IEEE Transactions on Automatic Control 31.4, pp. 306-315; K. S. Narendra and A. M. Annaswamy (1987hb).
“PersistenyexCitatiominiadaptive systemstd International Journal of Controf 45,1, pp. 127-160; L. Ljung (1987). System ldentification: Theory for the User. Prentice-Hall.
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Machine Learning: Persistent Excitation

Often consider white noise/Gaussian N(0,c?) inputs for regressor ¢!l
In the limit of infinite samples: S(w) = ¢ > 0, a constant, sufficient for R(®) positive definite

Realistic case of finite samples:

| . 1 1
With probability 1 — p¢, and 1" > 15, (pf) - |parameter error|| < O (po[y ( ) .polylog (—))

T pf

Probability of failure p; allows for error due to the presence of finite samples S(w)

> Polynomial convergence rates

[1] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu (2018). “Regret Bounds for Robust Adaptive Control of the Linear Quadratic Regulator”. In: Advances in Meural Information Processing Systems 31. Curran Associates, Inc.,
pp. 41924200 2019 Boeing. All rights reserved.
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Adaptive Control: Stability Framework

Update laws chosen by constructing Lyapunov functions V-
V= 1976 + T Pe + ao” Po

o= Fo  F: Hurwitz matrix
Leads to: . _ o ‘ -

V =—elQe — a0’ Qo+ 2¢' PUH* 6 <0 for a > ay
Define d(t) = 2¢” Pbo*T ¢

We also obtain:

T T 1
/ el Qedt — / 5(t)dt < — / Vdt = Vi(ty) — V(T) < oo

f-IJ f[] fll

Therefore ¢ € Lo N L

[1] KoSrMaréndfd andefoghl Apnaswamye(1989). Stable Adaptive Systems. (out of print). NJ: Prentice-Hall, Inc.
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Machine Learning: Regret

In online learning, efficiency of an algorithm is often analyzed using the notion of “regret”
Choose convex cost Cj. = F{Qq Q=0Q" >0 Best cost: mingeceo Zf,:l Ci(0)
Represents cost associated with the best parameter estimate in hindsight!M[2/B114]

Define regret as follows:

He©

T T
regret, = ZC;,(()L.) — min ZCL.(())
k=1

k=1

This is equivalent to:

T T
continuous regret, = / el Qedt — / S(t)dt
* f'H . t[]'

d(t): Exponentially decaying signal

[1] M. Zinkevich (2003). “Online Convex Programming and Generalized Infinitesimal Gradient Ascent”. In: Proceedings of the 20th International Conference an Machine Learning (ICML-03), pp. 928-036

[2] E. Hazan, A. Agarwal, and 5. Kale (2007). “Logarithmic regret algerithms for online convex optimization”. Machine Learning 69.2-3, pp. 160-192.

[3] E. Hazan, A. Rakhlin, and P. L. Bartlett (2008). “Adaptive Online Gradient Descent”. In: Advances in Neural Information Processing Systems 20. Curran Associates, Inc., pp. 65-72.

[4] EoHazan (20069 BSlIntrodiction tos©nline Convex Optimization”. Foundations and Trends in Optimization 2.3-4, pp. 157-325.
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Lyapunov Functions and Regret

T T
Machine Learning : regret, = ;C;,(()A,) — Inin ;CAJ(())

T T
Quadratic Cost, Continuous : regret, = / el Qedt — / S(t)dt
t t

. 0 * 0

T

1 1 .
Adaptive Control : / el Qedt — / o(t)dt < / Vidt =Vi(ty) — V(T

l‘Ll] * Tll fll

Machine learning: Show that average regret grows sublinearlylll i.e. (1/T1")regret; — 0 with T°
Adaptive control: Convergence of e(t) to zero established by updating V' to include effect of initial
conditions. regret;- = (J(1), a constant

[1] EoHazan (20069 BSIntroduction tos©nline Convex Optimization”. Foundations and Trends in Optimization 2.3-4, pp. 157-325.
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Improved Algorithm Performance Bounds Uity

S & - - - ]
Loss Function : L = 5||o"f 0—1yl|5, Prediction Error : ¢, = y—y. Parameter Error : 6 = () —

T T
regret = / f‘ﬁdf = / (0! 6)2dt
- f_l]‘ - ]

Adaptive Control Machine Learning
Algorithm : h = —YVL(0) = ~oe, Algorithm : 01 = e (0 — v VoL(0f))

Lyapunov Function: V =~"197¢ V01,02 € ©, ||6h — 62 <D

Time Derivative : V = —e*f, [£(61) = f(02)] < G|01 — 0]

- . " D

T i Step Size : 7 =
/ e dt = — / Vdt = V(ty) = V(T) < R GV
. f'[i b f[]

regret < V(tp) |O(1) VS. O(\/T)

3
regrety < EG’D\/T
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Deep Reinforcement Learning Methods

for Air-to-Air Combat & Control

This material, namely slides 6, 9, and 10, is based on research sponsored by the Air Force Research Laboratory under
Subaward number FA8650-19-2-6983. Other than media embedded herein from Johns Hopkins Applied Physics Laboratory
(APL), the views and conclusions contained in this presentation are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government.

Not subject to EAR or ITAR export regulations.
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~ Timeline of Artificial Intelligence in Games

1952 Machines Playing
Checkers

1963 Machines Playing
Tic-Tac-Toe

1992 Machines Playing
Backgammon

1997 IBM Deep Blue Beats
Kasparov

2011 Beating Humans in
Jeopardy

2016 Beating Humans in
Go

2019 Beating Humans in
Dota 2

2020+ Real-world combat
games?

Copyright © 2020 Aurora Flight Sciences. All Rights Reserved.
Use or disclosure of data contained on this page is subject to the restriction on the title page.

Arthur Sameul joins IBM Poughkeepsie Laboratory and begins working on some of the very first machine learning
programs, first creating programs that play checkers

Donald Michie creates a ‘machine’ consisting of 304 match boxes and beads, which uses reinforcement learning to
play Tic-Tac-Toe

Gerald Tesauro develops TD-Gammon, a computer backgammon program that uses an artificial neural network
trained using temporal difference learning. TD-Gammon can rival, but not consistently surpass, the abilities of top
human backgammon players

IBM’s Deep Blue beats the world champion at chess

Using a combination of machine learning, natural language processing and information retrieval techniques, IBM’s
Watson beats two human champions in a Jeopardy! competition

Google’s AlphaGo program becomes the first Computer Go program to beat an unhandicapped professional human
player using a combination of machine learning and tree search techniques. Later improved as AlphaGo Zero and
then in 2017 generalized to Chess and more two player games with Alpha Zero

In April 2019, OpenAl won a Dota 2 best-of-three series against The international 2018 champions OG at a live
event in San Francisco. A four-day online event to play against the bots, open to the public, occurred the same
month where OpenAl Five won all but 4075 out of 42,729 games.




Problem Complexity Higher

Lower

Program Overview

Nonlinear
Interactive
Systems \
\
Physics-Based \\
Maneuver Systems m— N\ 00 1D,
— SALEE 7
\ : ~
e~ e
™~ ~
\ | — — —
N\
Dogfight is gateway to nonlinear combat autonomy
Combat autonomy
is stuck here!
Lower Cognitive Workload Higher

Source: DARPA Air Combat Evolution

Copyright © 2020 Aurora Flight Sciences. All Rights Reserved.
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* The ability to

successfully apply
full-scale Al to
combat problems is
the first step in
applying autonomy

to highly complex
systems of value

 Fully autonomous

agents enable
novel missions and
task directives




'DARPA Air Combat Evolution (ACE) — ADT follow-on

@ Motivation: Human pilots & battle managers will need to rely on behaviors
of autonomous systems to increase ratio of humans to unmanned assets

TA]. Increase performance of AlphaMosaic
automated tactical decision making TA3: Scale to mosaic

multiple performers

. . . S AlphaDogfight ; i . “’
T A 2 Build pilot trust in combat V0 Tar bk dosanisiges Integration Tearm il )%
automation o - - ]
TA4: Prc\_fide full ’
T A3 Scale performance and seale aerat
maintain trust up the stack

A

TA4 Demonstrate performance on
increasingly realistic platforms

Source: DARPA Air Combat Evolution
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~ |Alpha Dogfight Trials

» A guns only, 1v1 dogfight

» Modern fighter jet dynamics

» Explainability and trust are
Important factors!

» Our approach — a structured and
disciplined application of modern
reinforcement learning and training
techniques

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.
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» 1v1 Dogfight (adversarial)

A/

o0 Noise

A/

4
4
4

\‘

INPUTS: [p,Nz, 3, Fx]
UTPUTS: [u,v,w,,0,¢ ..] e R™>°
2 OBJECTIVE: Enemy Health = 0

2 Well posed as a reinforcement
learning/sequential decision making task

N
Mixed observability
o

A/

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.
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Pro-Nav Targeting

Leverage strong
controller design
Emphasis on
perfecting basic
techniques

Expert System

* Heauvily utilize
pilot-designed

objective functions

and state
machines
* Rule-based

decision making
« Utilize EM theory

and analysis

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.

| Aurora’s AlphaDogfight Approach

End-to-End Al

Reinforcement
Learning trained
agent
Bootstrapped
training via
imitation learning
Trained vs canned
agents and prior
developed agents
(pro-nav and
expert systems)

Use or disclosure of data contained on this page is subject to the restriction on the title page.

Self-Play Al

Built off End-to-
End Al

Trained via
population based
self-play

Able to generate
novel strategies
and tactics

Hierarchical RL

Hierarchical
Reinforcement
Learning Structure
Leverages the
power of RL/AI
Maintains
understandability
and modularity
through explicit
structure and
design




Key Concepts in Reinforcement Learning

» Reward shaping
» State space design
» Different types of reinforcement learning for different use cases:

Algorithm Description Action Space | State Space
E ﬁ !\ Monte Carlo Every visit to Monte Carlo Discrete Discrete
% Q-learning State—action—-reward-state Discrete Discrete
SARSA State—action—reward—state—action Discrete Discrete
Env iro nment Q-learning - Lambda |State—action—reward—state with eligibility traces Discrete Discrete
SARSA - Lambda State—action—reward—state—action with eligibility traces Discrete Discrete
g DON Deep Q Network Discrete Continuous
Rew -ld DDPG Deep Deterministic Policy Gradient. - - Continuous Cont?nuous
ar, < A3C Asynchronous Advantage Actor-Critic Algorithm Continuous Continuous
In terpreter NAF Q-Learning with Normalized Advantage Functions Continuous Continuous
TRPO Trust Region Policy Optimization Continuous Continuous
St‘a te \G'DJ PPO Proximal Policy Optimization Continuous Continuous
. TD3 Twin Delayed Deep Deterministic Policy Gradient Continuous Continuous
[ SAC Soft Actor-Critic Continuous Continuous
Agent

Copyright © 2020 Aurora Flight Sciences. All Rights Reserved.
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https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action
https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action
https://en.wikipedia.org/wiki/Q-learning#Deep_Q-learning
https://en.wikipedia.org/w/index.php?title=Proximal_Policy_Optimization&action=edit&redlink=1

'RL Example: Q-Learning

» Q value and the Q-learning update:

New Q value Temporal Difference

Qi+1(sp,ar) < Qi(sp,ar) +a-[r(s,a) +v - mC?X Qi(s¢ + 1, a) — Q(s¢, ag)]

Old Q value

» Bellman equation & optimal value function:

V(s) = max{Q"(s,a)}
V(s) = max{r(s,a) +yV(f(s,a))}

» Optimality of Q-learning:

lim max{Q;(s,a)} = V(s)

i—oo a€eA
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"~ Reinforcement Learning Difficulties

»Credit Assignment Problem n* = argmax, E
« “Reward Engineering”

Z Vtrt|”]
t=0
»Exploration vs. Exploitation
« Heuristic solutions (process noise, epsilon-greedy, UCB)

»Curse of Dimensionality
» Transfer learning, non-stationary environments, etc.

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.
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Tools to Drive Training

RS

Blue: Red:
Health: ©.59 Health: 1.00
Reward: 9.00 Reward: 0.01
Altitude: 06744 ft Altitude: 06628 ft
Velocity X: 0623.8 ft/s Velocity X: 0573.4 ft/s
Velocity Y: -042.7 ft/s Velocity Y: -000.2 ft/s
Velocity Z: ©164.5 ft/s Velocity Z: 0135.9 ft/s
pitch:  -47.7 deg pitch: 002.6 deg
Roll: 131.3 deg Roll: 135.9 deg
AoA:  ©14.8 deg AoA:  013.3 deg
Sideslip:  -03.8 deg Sideslip:  -80.8 deg
Fuel:  89.63 % Fuel:  93.72 %
4

e

Time:

Distance to Opponent:
Speed Difference:
Altitude Difference:

064.6 sec
1756 ft
0857 ft/s
elis ft

# € +Ql=

Camera Follow:  Blue © Red
Plane Size: @ large  Medium
Cone: " Gun Snap " Tracking
Toggle Grid Lines
Save State
XPlane Display: & Blue  Red

Blue: Red:
Aileron: feoocoosao looseocoasan ] Aileron:
Elevator: ..
Rudder:
Throttle:

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.
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= None
 Actual
« None

» Visualization tools help
experts debug and
accelerate training




~ |Tools to Drive Training

2 Al verification and
validation techniques
through VR

» Know your system

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.

Use or disclosure of data contained on this page is subject to the restriction on the title page.



~_Base Single-Level Agent

~ N ~ N
Aileron
Quaternions ‘_'_‘ ®
Elevator
: : X
Coherent Proximal Policy ‘—'—‘ .
Pos/Vel Optimization Rudder

o— o ®

alculateo Throttle
P Handcrafted Rewards 9 )

-
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~ |Hierarchical RL

Hierarchical RL design
enables greater non-
linearity in learned
behaviors

Solve credit-
assignment and tackle

reward sparsity more
efficiently

Engender higher levels
of “explainability” of
agent behavior

Snhapper

Takes full advantage of
Population Based Self
Play

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.
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Environment Observations

Gross
Acquisition

Fine
Acquisition




ICurriculum for Reinforcement Learning

» Train a single policy on progressively more difficult tasks

» Contrasts with training a policy from scratch on the
desired task/data distribution

» Requires more reward tuning/design and environment
design

» An aerial combat example:

» Very Easy: Train agent starting directly behind
opponent

» Easy: Train agent from offensive initial conditions
» Medium: Train agent starting from neutral conditions

» Hard: Train agent starting from defensive initial
conditions

» Very Hard: Train agent starting directly in front of
opponent

Copyright © 2020 Aurora Flight Sciences. All Rights Reserved.
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]
Actions Observations RL learning
and rewards ;e
— T[mm - Y.
. N
Mixing 1‘
Knowledge
M T(o Tk > transfer
ie. distillation
g X
ST Matcehing J

Czarnecki, Wojciech, et al. "Mix & match agent
curricula for reinforcement learning." International
Conference on Machine Learning. PMLR, 2018.




~ | The AlphaDogfight Final Trials

2 A multi-day publicized event held in Summer 2020
2 Eight competitors faced off in a round-robin style tournament

» Aurora Flight Sciences placed 3™

Heading: 87 deg
Alt: 8736 ft
Speed: 286 kts
Climb: 246 fps
Track Ang: 113 deg
4.1g
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Key Takeaways

2 Flexible software architecture is key

» Lean on domain experts when trust and explainability are desired
2 Tools that enable scalable training and data-collection are key
2 Performance and trust/interpretability are hard to balance!

2 Al tools and algorithms can play a leading and effective role in the future of
combat

7 ...but much more work still needs to be done
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Workshop for the 2021 5" IEEE Conference on Control Technology and Applications (CCTA) .
San Diego, California, August 8-11 , 2021

Multi-Vehicle and Assured Autonomous Control for Aerospace Applications

- Organized by the IEEE CSS Technical Committee on Aerospace Controls -

Questions?
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