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CCTA TCAC Workshop: Multi-Vehicle and Assured Autonomous Control for Aerospace Applications 

■ As machine learning methods become more prevalent in guidance, navigation, controls, and autonomy (GNC&A), problems of 
a dynamical nature will increasingly need to be considered. The dynamical nature of these problems may include regressors 
that are time-varying, necessitating new algorithms in machine learning approaches as well as real-time decision making in 
the presence of uncertainties using adaptive control approaches. Problems of stability, fast learning with analytical 
guarantees, and constrained nonlinear systems have to be simultaneously addressed. Some of these problems have to be 
addressed from a machine learning perspective, while others have to be dealt with using adaptive control approaches. 
Throughout, analytical guarantees must be considered in order to apply machine learning for decision making in real-time. 
These theoretical guarantees are necessary to address advanced guidance and control challenges for next generation aerial 
vehicles. Recently, under the DARPA AlphaDog fight Trials (ADT) program for within-visual-range dogfighting, Aurora 
Flight Sciences developed competitive AI agents that are robust, trustable and capable. The approach combined reinforcement 
and machine learning, expert-systems and rule-based methods, and principles from guidance, navigation and control (GNC). 
Holistically fusing these domains enabled the AI to incorporate domain knowledge and results from traditional disciplines 
while still leveraging the latest tools from machine/reinforcement learning. 

‒ Dr. Heather Hussain, BR&T GNC&A  (Presenter)
‒ Dr. Joseph Gaudio, AFS Autonomy Research Division (Presenter)
‒ Dr. James Paduano, AFS Autonomy Tech Area Lead 
‒ Anubhav Guha, MIT PhD Candidate, prior AFS Autonomy Research Division (Presenter)
‒ John Piotti, AFS Autonomy Research Division
‒ Bradley Lan, Morse Corp. GNC, prior AFS Autonomy Research Division

Abstract: “The Intersection between Machine Learning & GNC” 
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CCTA TCAC Workshop: Multi-Vehicle and Assured Autonomous Control for Aerospace Applications 

■ Dr. Heather Hussain received the B.S. degree and M.S. degree in mechanical engineering from the Rochester Institute of Technology, 
Rochester, NY, USA, in 2012, and the Sc.D. degree in mechanical engineering at the Massachusetts Institute of Technology (MIT), 
Cambridge, MA, USA in 2017. Her work experience comprises several internships spanning the aerospace and consumer electronics
industries– namely, in Product Design at Apple Inc., as a research Scholar at the Munitions Directorate of the Air Force Research 
Laboratory, and her work in the design and development of verifiable adaptive flight control systems at The Boeing Company. Ms. 
Hussain’s doctoral research at MIT was sponsored by the Boeing Strategic University Initiative under the direction of Dr. Eugene
Lavretsky and Dr. Anuradha Annaswamy. Ms. Hussain joined BR&T’s Guidance, Navigation, Control, and Autonomy (GNC&A) group 
in September 2017. Her research interests lie in adaptive control theory, particularly with applications in aerospace. Ms. Hussain is a 
member of AIAA and IEEE.

Biographies (Presenters)

■ Dr. Joseph E. Gaudio received the B.S. degree in mechanical engineering from the University of Illinois at Urbana-Champaign, 
Champaign, IL, USA, in 2016, and the Ph.D. degree in mechanical engineering at the Massachusetts Institute of Technology (MIT), 
Cambridge, MA, USA in 2020. His work experience comprises several internships at Boeing Research and Technology (BR&T) and The 
Boeing Phantom Works. His doctoral research at MIT was sponsored by the Air Force Research Laboratory and the Boeing Strategic 
University Initiative under the direction of Dr. Anuradha Annaswamy. Gaudio joined the Autonomy Research Division at Aurora Flight 
Sciences, a Boeing Company in June 2020. His research interests lie in nonlinear, adaptive, and machine learning-based guidance, control, 
and online optimization. He is a member of IEEE.

■ Anubhav Guha received a B.S in Mechanical Engineering & a B.S in Physics from the Massachusetts Institute of  Technology in 2018. 
From 2018-2020 he worked as an autonomy engineer at Aurora Flight Sciences (AFS), where he served as the program manager and 
principal investigator for the AFS DARPA AlphaDogfight program. In 2020 Mr. Guha joined MIT’s Active Adaptive Control Laboratory
as a PhD candidate under the supervision of  Dr. Anuradha Annaswamy. His research interests lie in adaptive control theory, reinforcement 
learning, and optimal planning & control.
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CCTA TCAC Workshop: Multi-Vehicle and Assured Autonomous Control for Aerospace Applications 

■ Introduction
‒ Control Challenges for Future Air Vehicle Platforms

■ Robust Adaptive Control for High Speed Platforms (Dr. Heather Hussain)

■ The intersection between Machine Learning & Adaptation (Dr. Joseph Gaudio)
‒ Common Parameter Update Laws and Error Models

‒ Common Modifications to Parameter Update Laws

‒ Common Concepts and Tools

■ Deep Reinforcement Learning Methods for Air-to-Air Combat & Control (Anubhav Guha)
‒ Timeline of Artificial Intelligence in Games

‒ DARPA Alpha Dogfight Trials

‒ Key Components of Reinforcement Learning

‒ Curriculum for Reinforcement Learning

‒ Final Results from AlphaDogfight Trials

‒ Key Takeaways

■ Summary & Questions

Outline
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Motivation for Adaptive and Learning Based Systems

■ With the advent of each next generation technology, demands for a rapidly reconfigurable control system yielding invariant performance under 
increasingly unknown or widely varying operating conditions becomes crucial.

‒ e.g. High Speed platform challenges [1] “HIFiRE 6: Overview and Status Update 2015,” 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2015. [2] Robust and 

Adaptive Control for High Speed Vehicles, ACGSC Meeting 119, Dayton, OH, 2017

■ Adaptive control theory is a mature control discipline that allows for real-time compensation of parametric uncertainties and changes in system 
dynamics

‒ Premise: Adapt system parameters to provide a vehicle response that more closely follows the reference model

■ Machine Learning, a largely data driven process where learning typically occurs offline, is also key in addressing the control challenges of future 
autonomous systems.

■ Objective: Obtaining efficient, stable, & robust learning systems for GNC-enabled autonomy.

Introduction

Nonparametric
— Flexible Effects, 

Actuator 

Dynamics 

Parametric 
— Unknown stiffness, 

Control effectiveness

Uncertainty

Online Information

Machine Learning



Intersection between Machine Learning & Adaptation

Dr. Joseph Gaudio, AFS Autonomy Research Division
(presentation based on PhD thesis, prior to joining AFS)
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Intersection between Machine Learning & Adaptation:
Common Parameter Update Laws and Error Models
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Intersection between Machine Learning & Adaptation:
Common Modifications to Parameter Update Laws
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Intersection between Machine Learning & Adaptation:
Common Concepts and Tools
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Deep Reinforment Learning Methods for Air-to-Air Combat & Control
• Anubhav Guha, MIT PhD Candidate, prior AFS Autonomy Research Division (Presenter)
• Dr. James Paduano, AFS Autonomy Tech Area Lead 
• John Piotti, AFS Autonomy Research Division
• Bradley Lan, Morse Corp. GNC, prior AFS Autonomy Research Division



Deep Reinforcement Learning Methods 
for Air-to-Air Combat & Control 

This material, namely slides 6, 9, and 10, is based on research sponsored by the Air Force Research Laboratory under 

Subaward number FA8650-19-2-6983. Other than media embedded herein from Johns Hopkins Applied Physics Laboratory 

(APL), the views and conclusions contained in this presentation are those of the authors and should not be interpreted as 

necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research 

Laboratory or the U.S. Government.

Not subject to EAR or ITAR export regulations.
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Overview

Timeline of Artificial Intelligence in Games

DARPA Alpha Dogfight Trials

Key Components of Reinforcement Learning

Hierarchical Reinforcement Learning and Curriculum Training

Final Results from AlphaDogfight Trials

Key Takeaways

Questions
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Timeline of Artificial Intelligence in Games
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Year Summary Description

1952 Machines Playing 

Checkers

Arthur Sameul joins IBM Poughkeepsie Laboratory and begins working on some of the very first machine learning 

programs, first creating programs that play checkers

1963 Machines Playing 

Tic-Tac-Toe

Donald Michie creates a ‘machine’ consisting of 304 match boxes and beads, which uses reinforcement learning to 

play Tic-Tac-Toe

1992 Machines Playing 

Backgammon

Gerald Tesauro develops TD-Gammon, a computer backgammon program that uses an artificial neural network 

trained using temporal difference learning. TD-Gammon can rival, but not consistently surpass, the abilities of top 

human backgammon players

1997 IBM Deep Blue Beats 

Kasparov

IBM’s Deep Blue beats the world champion at chess

2011 Beating Humans in 

Jeopardy

Using a combination of machine learning, natural language processing and information retrieval techniques, IBM’s 

Watson beats two human champions in a Jeopardy! competition

2016 Beating Humans in 

Go

Google’s AlphaGo program becomes the first Computer Go program to beat an unhandicapped professional human 

player using a combination of machine learning and tree search techniques. Later improved as AlphaGo Zero and 

then in 2017 generalized to Chess and more two player games with Alpha Zero

2019 Beating Humans in 

Dota 2

In April 2019, OpenAI won a Dota 2 best-of-three series against The international 2018 champions OG at a live 

event in San Francisco. A four-day online event to play against the bots, open to the public, occurred the same 

month where OpenAI Five won all but 4075 out of 42,729 games.

2020+ Real-world combat 

games?



• The ability to 

successfully apply 

full-scale AI to 

combat problems is 

the first step in 

applying autonomy 

to highly complex 

systems of value

• Fully autonomous 

agents enable 

novel missions and 

task directives

Copyright © 2020 Aurora Flight Sciences. All Rights Reserved.
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Source: DARPA Air Combat Evolution

Program Overview



DARPA Air Combat Evolution (ACE) – ADT follow-on

Copyright © 2020 Aurora Flight Sciences. All Rights Reserved.

Use or disclosure of data contained on this page is subject to the restriction on the title page.

Increase performance of 
automated tactical decision making

Motivation: Human pilots & battle managers will need to rely on behaviors 
of autonomous systems to increase ratio of humans to unmanned assets

TA4

TA3

TA2

TA1

Build pilot trust in combat 

automation

Scale performance and 

maintain trust up the stack

Demonstrate performance on 

increasingly realistic platforms

Source: DARPA Air Combat Evolution



 A guns only, 1v1 dogfight

 Modern fighter jet dynamics

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.
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 Explainability and trust are 

important factors!

Our approach – a structured and 

disciplined application of modern 

reinforcement learning and training 

techniques

Alpha Dogfight Trials
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1v1 Dogfight (adversarial)

No Noise

Mixed observability

𝑰𝑵𝑷𝑼𝑻𝑺: 𝑝, 𝑁𝑧, 𝛽, 𝐹𝑥

𝑶𝑼𝑻𝑷𝑼𝑻𝑺: 𝑢, 𝑣, 𝑤, 𝜙, 𝜃, 𝜓 … 𝜖 ℝ~50

𝑶𝑩𝑱𝑬𝑪𝑻𝑰𝑽𝑬: 𝐸𝑛𝑒𝑚𝑦 𝐻𝑒𝑎𝑙𝑡ℎ = 0

Well posed as a reinforcement 

learning/sequential decision making task

Problem Specifics



Aurora’s AlphaDogfight Approach
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Pro-Nav Targeting

• Leverage strong 

controller design

• Emphasis on 

perfecting basic 

techniques

 𝑣 𝜌

 𝑎

Expert System

• Heavily utilize 

pilot-designed 

objective functions 

and state 

machines

• Rule-based 

decision making

• Utilize EM theory 

and analysis

End-to-End AI

• Reinforcement 

Learning trained 

agent

• Bootstrapped 

training via 

imitation learning

• Trained vs canned 

agents and prior 

developed agents 

(pro-nav and 

expert systems)

Self-Play AI

• Built off End-to-

End AI

• Trained via 

population based 

self-play

• Able to generate 

novel strategies 

and tactics

Hierarchical RL

• Hierarchical 

Reinforcement 

Learning Structure

• Leverages the 

power of  RL/AI

• Maintains 

understandability 

and modularity 

through explicit 

structure and 

design



Key Concepts in Reinforcement Learning
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Algorithm Description Action Space State Space

Monte Carlo Every visit to Monte Carlo Discrete Discrete

Q-learning State–action–reward–state Discrete Discrete

SARSA State–action–reward–state–action Discrete Discrete

Q-learning - Lambda State–action–reward–state with eligibility traces Discrete Discrete

SARSA - Lambda State–action–reward–state–action with eligibility traces Discrete Discrete

DQN Deep Q Network Discrete Continuous

DDPG Deep Deterministic Policy Gradient Continuous Continuous

A3C Asynchronous Advantage Actor-Critic Algorithm Continuous Continuous

NAF Q-Learning with Normalized Advantage Functions Continuous Continuous

TRPO Trust Region Policy Optimization Continuous Continuous

PPO Proximal Policy Optimization Continuous Continuous

TD3 Twin Delayed Deep Deterministic Policy Gradient Continuous Continuous

SAC Soft Actor-Critic Continuous Continuous

Reward shaping

State space design 

Different types of reinforcement learning for different use cases:

https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action
https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action
https://en.wikipedia.org/wiki/Q-learning#Deep_Q-learning
https://en.wikipedia.org/w/index.php?title=Proximal_Policy_Optimization&action=edit&redlink=1
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𝑄𝑖+1 𝑠𝑡, 𝑎𝑡 ← 𝑄𝑖 𝑠𝑡 , 𝑎𝑡 + 𝛼 ⋅ [𝑟(𝑠, 𝑎) + 𝛾 ⋅ max
𝑎
𝑄𝑖 𝑠𝑡 + 1, 𝛼 − 𝑄(𝑠𝑡 , 𝑎𝑡)]

lim
𝑖→∞
max
𝑎∈𝐴
𝑄𝑖 𝑠, 𝑎 = 𝑉(𝑠)

New Q value

Old Q value

Temporal Difference

Q value and the Q-learning update:

Bellman equation & optimal value function:

Optimality of Q-learning:

𝑉 𝑠 = max
𝑎∈𝐴
{𝑄∗ 𝑠, 𝑎 }

𝑉 𝑠 = max
𝑎 ∈ 𝐴
{𝑟 𝑠, 𝑎 + 𝛾𝑉 𝑓 𝑠, 𝑎 }

RL Example: Q-Learning
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Credit Assignment Problem
• “Reward Engineering”

Exploration vs. Exploitation
• Heuristic solutions (process noise, epsilon-greedy, UCB)

Curse of Dimensionality

Transfer learning, non-stationary environments, etc.

Reinforcement Learning Difficulties

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋 𝐸  

𝑡=0

∞

𝛾𝑡𝑟𝑡|𝜋
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Visualization tools help 

experts debug and 

accelerate training

Tools to Drive Training
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AI verification and 

validation techniques 

through VR

Know your system

Tools to Drive Training



Base Single-Level Agent

Aileron

Elevator

Rudder

Throttle

⊗

⊗

⊗

Proximal Policy 

Optimization

Quaternions

Coherent 

Pos/Vel

Calculated 

Features

Handcrafted Rewards

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.
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Hierarchical RL

 Hierarchical RL design 

enables greater non-

linearity in learned 

behaviors

 Solve credit-

assignment and tackle 

reward sparsity more 

efficiently

 Engender higher levels 

of “explainability” of 

agent behavior

 Takes full advantage of 

Population Based Self 

Play 

Master

Snapper Tracker

Gross 

Acquisition

Fine 

Acquisition

Environment Observations

Copyright © 2020-2021 Aurora Flight Sciences. All Rights Reserved.
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Curriculum for Reinforcement Learning

Copyright © 2020 Aurora Flight Sciences. All Rights Reserved.

Use or disclosure of data contained on this page is subject to the restriction on the title page.

Train a single policy on progressively more difficult tasks

Contrasts with training a policy from scratch on the 

desired task/data distribution

Requires more reward tuning/design and environment 

design

An aerial combat example:

Very Easy: Train agent starting directly behind 

opponent

Easy: Train agent from offensive initial conditions

Medium: Train agent starting from neutral conditions

Hard: Train agent starting from defensive initial 

conditions

Very Hard: Train agent starting directly in front of 

opponent

Czarnecki, Wojciech, et al. "Mix & match agent 

curricula for reinforcement learning." International 

Conference on Machine Learning. PMLR, 2018.



The AlphaDogfight Final Trials
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A multi-day publicized event held in Summer 2020

Eight competitors faced off in a round-robin style tournament

Aurora Flight Sciences placed 3rd



Key Takeaways
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Flexible software architecture is key

Lean on domain experts when trust and explainability are desired

Tools that enable scalable training and data-collection are key

Performance and trust/interpretability are hard to balance!

AI tools and algorithms can play a leading and effective role in the future of 

combat

…but much more work still needs to be done
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