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Autonomy & Al Research Theme
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EPSRC Trustworthy Autonomous Systems Research
Nodes

N

Hub
H Provides coordination H Resilience

Leads on advocacy and

engagement activities

Lancaster
University
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Trustworthy Autonomous Systems(TAS) Node on
Security : The Control Challenge

" BAE SYSTEMS

« Autonomous Systems rely on the ability to
conduct run time adaptations of control
decisions over attacks or “perceived”
attacks:

* Adversaries
* Physical
 Information-plane

* Information and dynamic environment
uncertainties

» Degraded performance
* CNS and Infrastructure
* Actuators

* How to do this in a “trustworthy” fashion in
a “learning-enabled context™?
« Safe
« Secure
* Reliable




Evolution of Attacks or “Perceived” attacks

Sensing and COMM errors é‘@ & %

Loss of an actuator

 Environmental conditions _— e
* Wlnd N N ww\wuaawwwss 222 N
- Electronic Attacks \\\ A '4/\
« Jamming ﬂ\ A KL LA [
- A JAVAY mcwm R
Spoofing 7_?

Electromagnetic deception

» false/duplicate target generation
onature

Target image: race car Race car

Generative Adversarial Networks
* DNN perception and classification

Injecting false patterns into data




Key cornerstones in Al-Driven Design

Bo2. A5 sute Theme A: Dynamics and - Provide quantifiable safety and
Space & Uncertainty from Mission Surface i )
—— o feedback to the mission surface
Regon when the limits of secure

Theme B: User controllability are compromised

Uncertainty Behavior Aware

Frveiore g e Stabilityin within a time horizon under current
contrelsuiece nolicies and adversarial situations.

< ) & * Key Solution Cornerstones in Learning-
Theme C: Delay Sensitive‘_ r mm::' Cross-Layer Enabled Context
o Secure Networkdng In s | Remiad - Interpretability => Explainable and
Trustworthy Al
o monitor & guard  Continual Assurance => Dynamic
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Adaptive Security Strategies




Air Mobility Urban - Large Experimental
Demonstrations (AMU-LED) SESAR '
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« Europe’s main AAM demonstration project with CORUS XUAM (2021-2022)
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Adaptive Security Strategies

* Deep Reinforcement Learning Based
Adaptive Controls

» Learn adaptation strategy through
observation between reference
model and the reality

Adaptive Law

Controller

Reference Xm
Variable e v
- pserver —C)
Gain A
\Ae, e, [ eldt [ Adaptation \j-
| RL Agent ) | Mechanism |«
A
Yuksek B, Inalhan G. Reinforcement Learning Based Closed-loop Reference Model  (ysed in training phase) >
Adaptive Flight Control System Design. International Journal of Adaptive Control
and Signal Processing. 2020;1-21.

System
. Dynamics ) x




State-of-Art Outlook

/ Model Reference Adaptive Control and Improvements \

A

» Trade-off in adaptive control systems between;

* Improved transient performance vs decreased convergence speed of
adaptation parameters.

*Lavretsky, E. and Wise, K. A., Robust and Adaptive Control, Springer, London, 2013.

**Narendra, K. S. and Annaswamy, A. M., Stable Adaptive Systems, Dover Publications, 2012.

***Hovakimyan, N. and Cao C., L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation, Society for Industrial and
Applied Mathematics, 2010.




MRAC vs CRM

* Model Reference Adaptive Control (MRAC)
* A universal observation in adaptive systems:

« Convergent, yet oscillatory adaptation behavior in the presence of
modeling errors.

« Speed of adaptation can be increased by increasing the
adaptation gain at the cost of increased oscillation frequency.
« MRAC with Closed-loop Reference Model (CRM)
» Transient performance is improved.

» Unlike the MRAC structure, Luenberger-like reference model is used
in CRM adapitve systems™.

-\.‘ref = Aref Xref T Lv (\ . -\‘ref) +B ref Yemd

Error Feedback Term

*Eugene Lavretsky and Kevin A. Wise, Robust and adaptive control (pp. 317-353), Springer, London, 2013.




CRM Adaptive Control Systems Implementation

» General Scheme of the MRAC and CRM-Adaptive Systems

Model Reference Adaptive Control System Closed-loop Reference Model (CRM) Adaptive System
(MRAC) (Observer-like Reference Model)

i’ Ref. Model
> Ref. Model

Adaptive Law Adaptive Law

Controller Controller




CRM Adaptive Control Systems Double Edge Sword

« Another important feature of the CRM-adaptive systems is water-bed
effects

» A badly chosen design parameters (learning rate and observer gain)
can significantly worsen the adaptive system performance in terms of

u(t)

—_— =10 p = 100 —

- ===l p=] 7 Closed-loop ref. model with

\ parameter optimizaion

Closed-loop ref. model without
parameter optimizaion

{aalt)|

Travis E. Gibson, Anuradha M. Annaswamy, and Eugene Lavretsky. "Adaptive systems with closed-loop
reference-models, part I: Transient performance." 2013 American Control Conference. IEEE, 2013.




CRM Adaptive Control Systems

« CRM-Adaptive Systems with Fixed Observer Gain :
« Small amplitude L,, => High frequency oscillation
« Large amplitude L,, => Slow Dynamics

 Trade-off in CRM-adaptive systems between;
 Improved transient performance vs decreased convergence speed of
adaptation parameters.
* Why do not we use Variable Observer Gain ?

« Large amplitude L, is used in the initial phase of the adaptation
process => to improve the transient dynamics

« Small amplitude L, is used after the adaptation process is completed
=> to speed up the system response

« Can we learn the adaptation policy of the observer gain magnitude by
using Reinforcement Learning?

« RL-CRM Adaptive Control Systems

Yuksek B, Inalhan G. Reinforcement Learning Based Closed-loop Reference Model Adaptive Flight Control System Design.
International Journal of Adaptive Control and Signal Processing. 2020;1-21.




Reinforcement Learning - CRM Adaptive Control System

RL Agent E

rror
(for Actor Update) - Reward
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Learning of RL-CRM Adaptive Control Systems

 Learning algorithm is Deep Deterministic Policy Gradient (DDPG)
* Agent is based on an actor — critic neural network structure

RL Agent Error
(for Actor Update) . Reward

' @ Value
twor o ©
Critic Network
@

® O
o @

Action = k(t)
o ©

Environment

Observations

Additional questions about actor-critic agent:

e Can we use the trained agent on another platform which has similar mechanical
structure but different dynamical parameters? Is transfer learning method a suitable

solution to improve the performance of the trained RL agent on another platform?




NN and Reward Function Design for RL-CRM

 Neural Network Parameters

Network Parameter

Number of Hxdden Layers
Number of Nodes in Hidden Layers

Actor
Activaton Functions
Learning Rue
Gradient Threshold
Number of Obs, Path Hidden Lavers
Number of Nodes in Obs. Path Hadden Lavers
: Number of Actson Path Hidden Layers
Cntic .

Number of Nodes in Action Path Hadden Layers
Activabon Functions

Learning Rae

Gradient Threshokd

Value

10
Tanh
0,002
|

b

10

l

10
Tanh
0002
|

Reward Function:

R(t) = w R, (1) + w,R, (1) + w3 R, (1) + wyR, (1) + wsR,(1)

-1,
R, (1) =
¥ 0,
4,
R, (1) =
{(),
2,
R, (1) =
0,

2, ifle, (1) <00l andr > 0.3sec
R, ()= -
~y 0, otherwise

1.
R, (1) =
0.

w,=1Vie|l, 2345

if 1y, (Dl = 0.105
otherwise
if Je,(1)] < 0.0005
otherwise

if |a(r)] <002

otherwise

if [e(r)] <0.02

otherwise

Ability to span the whole Pareto-optimal frontier across millions of different scenarios
Including failures and variations.




RL-CRM Adaptive Control System Design on Scalar Pitch
Dynamics of a Helicopter

« Mathematical Model

1= qu " M(Se (56 " f(q)) \ Pitch Dynamics Model of a
M,: Vehicle pitch damping Transport Helicopter in
Mg : Elevator effectiveness Hover Flight
8,: Control input (Lavretsky, 2013, p. 270)
f(g): Inherent uncertainties in the helicopter dynamics >

360
f(g) = —0.01tanh (Tq) =6 d(q)

6: Unknown constant
®(q): Known regressor vector /

*Eugene Lavretsky and Kevin A. Wise, Robust and adaptive control, Springer, London, 2013.




RL-CRM Adaptive Control System Design on Scalar Pitch
Dynamics of a Helicopter

» Step Response Comparison of MRAC, CRM and RL-CRM

. Time History of the Variable Scaling Factor (k) in Transient Phase

. Transient Responses of MRAC, CRM and RL-CRM Adaptive Systems

2
e 0 (MRAC)
1
O l.S
? s
~ 0
= —
= 1
0.0 O.S
= = =« Command
e RL-CRM
JE— I
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Time (scc) Time (sec)




RL-CRM Adaptive Control System Design on Scalar Pitch
Dynamics of a Helicopter

Water-Bed Effect Comparison on MRAC, CRM and RL-CRM

, Absolute Value of True Error ¢°(1)
0. i ) ! : :

I« 0 (MRAC ‘

(.08 -

p— 0.06 -

,"(’

~

0.04

0.02

Absolute Value of u(t)

Time (sec)




RL-CRM Adaptive Control System Design on Scalar Pitch
Dynamics of a Helicopter

* 500-run Monte-Carlo Analysis for +35% Parametric Uncertainty on M, and

M 8,
Performance : . Improvement ; Improvement
, MRAC | CRM : RL-CRM 7z
Mctrics (%) (%)
WK, | 152114 | 3.7341 | 75.4520 2.4489 83.9008
Tl 18.4647 | 7.8298 | 57.5958 5.5146 70.1344
nal 0.0888 | 0.0338 | 61.9369 0.0207 76.6892
Il 02 | 0.2064 3.2 0.2 :
e, 04616 | 0.1957 | S57.6039 0.1379 70.1256
el 04616 | 03928 = 14.9047 0.3886 15.8145
Nall 6.5704 | 2.0811 68.3262 1.4163 78.4290




RL-CRM Adaptive Control System Design on Scalar Pitch
Dynamics of a Helicopter

* The Worst Case Analysis for —35% Parametric Uncertainty on M, and M,

Absolute Value of €°(t) in the Presence of —35% Uncertainty

Responses of CRM and RL-CRM Adaptive Systems
_in the Worst Case Scenario

= CRM with -35% Unc.
= RL-CRM with -35% Unc. | ]

T

0.2}
~ 015 F 4 : ‘ :
< 0 0.5 1 1.5 2 25 3 35
\.:'—:,/
o 0.1 Absolute Value of #(t) in the Presence of —35% Uncertainty
—— CRM without Unc.
0.05

— CRM with —35% Unec.
RL-CRM without Unec.
—— RL-CRM with —35% Unec.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec) —
0 0.5 1 15 2 25 3
Time (sec)

3.5 4




RL-CRM Adaptive Control System Design on Scalar Pitch
Dynamics of a Helicopter

* The Worst Case Analysis for —35% Parametric Uncertainty on M, and M,

Pcrfnrmancc MRAC | CRM Impm\:cmcm R1_.CRM lmprm:cmcnt
Metrics | (%) | (%)
K. 19.7655 | 49225 [ 750055 | 3.4801 §2.3931
1K, 229284 | 9.4137 58.9431 6.4318 71.9483

a 0.1103 | 0.0307 | 63.1010 0.0246 77.6972
Iy, Il 02 | 02171 -8.5500 0.2005 0.2500
lle, | 0.5732 | 02353 | 58.9498 0.1608 71.9470
el 0.5732 | 0.5101 11.0084 0.5214 9.0370
Wal 8.5403 | 2.6274 692353 | 1.8001] 78.9223




Major Challenges in Advanced Air Mobility Concept and
Our Autonomy Focus

ATM/UTM
Airspace
Integration

Regulation/

Certificati
e Advanced

Air
Mobility

First Principle Infrastructures

and CFD Analysis Multi-objective parameter

Key Vehicle optimization based FCS design
Technologies (Power, = = =
Battery, Safety, CM qa =27 B

|

and Autonomy)

System identification Al Based Autonomy:
Al Based Digital-Twin - - RL-Adaptive FCS Design
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Desktop-to-Flight Design Workflow*

System Controller Desktop ; ;
Identification Design/Optimization Simulation VH"' Simulation Flight Testing

| EHETE -
MATLAB [ || *% fe - —
SIMULINK 3=

ADS33E

[ MIL-STD-1797 }—\ Validation
Systam Controller Deskiop HIL Simutation
lder,:‘cauon Design'Optimization Simulation Flight Testng

) @ python I. ’
e S— MATIAR 4 W “ |.Z.:.."!'r‘::‘|
v - SIMULINK B

System Validation

cedd

fe 08

*Tischler, M. B., Berger, T., Ivler, C. M., Mansur, M. H., Cheung, K. K., and Soong, |. Y., “Practical Methods for Aircraft and
Rotorcraft Flight Control Design: An Optimization-Based Approach,” AIAA education series, 2017.




Reliable performance under large variations

Step Response Comparison of MRAC, CRM and RL-CRM Adaptive Syslcmﬁ

0.2

0.15} /\\

/
[
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0.1 T T T T
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| | CRM with v =04 | |
0.08 CRM with v = 0.6

CRM with v =08

— 0.06 CRM withv =10 |4
>, CRM with v = 1.2
S & e CRM with 6 = 0.5
~ 0.04 e RL-CRM 11
0.02
0 Pcrforn:mncc MRAC | CRM Improvement RL-CRM Improvement
0.4 0.5 0.6 Mectrics (%) (%)
Absolute Value of i(t) K| 15.2114 | 3.7341 75.4520 2.4489 83.9008
0.05 T v T T T 1 R e
KN 18.4647 | 7.8298 57.5958 5.5146 70.1344
04 P W
o néi 0.0888 | 0.0338 | 61.9369 0.0207 76.6892
=003 1 1yl 0.2 0.2064 -3.2 0.2 =
= 0 | lle, |l 04616 | 0.1957 57.6039 0.1379 70.1256
lle |l 0.4616 | 0.3928 14.9047 0.3886 15.8145
ol el 6.5704 | 20811 | 68.3262 1.4163 78.4290
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Towards Certification of Hybrid (Al/Classical) Controllers

ARP-4754
Alrcraft & System
Development
Processes

ADS-33E Systems
Requirements
MIL-STD-1797

High Level Integration
Software & Coverage

Requirements DO-178C Testing

Software
DO-178C Checks Verification
Software Considerations Low Level
y Unit
in Airborne Systems Software Yestin
and Equipment Requirements 9
Certification

Software Developmaent
CONDUIT _,

2™ MATLAB =
i { "\SIMULINK —

System Design Desktop Code HIL and SIL
Identification Controllers Simulations Generation Simulations




Next Steps....

* Design and VVQC for Al-Driven
Safety Critical Systems
« Extensive usage of synthetics and
digital-twins

» Reinforcement Learning in
Uncertain Environments with
Decentralized Decision-makers

* Fusion of Tree-based decision
algorithms and RL with learned
models

 Survivability and Lethality

 Human-Machine Teaming

* Hybrid-system models as
descriptive for behaviour taxonomy




Next Steps...

« Explainable Al for Reinforcement Learning (XAI-RL)
» Asynchronous Advantage Actor-Critic (A3C)
« Explanation (Visualization) Methods
« GradCam

Sensor

Actuator
O ‘ Actuators

= 35

Measurements
and Estimations

I 1
| 222
— qoer

CONTROL INPUTS
g - h Cockpit
g Interface
L, g § :
35 =
g N
Gradient

Table




Key cornerstones in Al-Driven Design

Bo2. A5 sute Theme A: Dynamics and - Provide quantifiable safety and
Space & Uncertainty from Mission Surface i )
—— o feedback to the mission surface
Regon when the limits of secure

Theme B: User controllability are compromised

Uncertainty Behavior Aware

Frveiore g e Stabilityin within a time horizon under current
contrelsuiece nolicies and adversarial situations.

< ) & * Key Solution Cornerstones in Learning-
Theme C: Delay Sensitive‘_ r mm::' Cross-Layer Enabled Context
o Secure Networkdng In s | Remiad - Interpretability => Explainable and
Trustworthy Al
o monitor & guard  Continual Assurance => Dynamic
design-time ‘ Verification & Validation
assurance

Wi ‘ » Adaptive Security Strategies
self-aware e ;
learning — % ‘

................




Continual Assurance: Dynamic
Verification and Validation




» Key factors (and uncertainty) in commercial
flight planning
» Wind
 Tail-number specific fuel consumption

» Essentially "the cost” boils down to fggl . o 4 i A
usage/cost L (R A, i ¥y
forces * |
i -3
| -
H -—
A = N
A = N

* Significant impact towards “sustainable
aviation” concept

» Cost
* Emissions




Aircraft Performance and Wind Calibration Scheme

Sg\\‘\l and Alutode
Schoduling
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Coenter
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Developing Digital-Twin Performance Models

New QAR Baseline performance
models Statistical
analysis
—_—
A ——
Data » Archilocture
warchouse Ry
® » »
¥J e » o * Hyperparameters
* " 9
. Decp ncural
Update decision actworks Training

)

Correction factor
model

Flight

planning

M. Uzun, M. U. Demirezen, E. Koyuncu, and G. Inalhan, “Design of a hybrid digital-twin flight
performance model through machine learning,” in 2019 IEEE Aerospace Conference. IEEE,
2019, pp. 1-14.




Digital-Twin Aircraft Performance Model 0
Syl

» Accurate trip fuel calculation. 4 F BWAT S AIRLINES

« Why high precision digital twins are important?
 High fidelity performance model means correct estimation of take-off fuel weight.
» Less take-off fuel stands for lest take-off weight, hence less total fuel consumption.

» The ratio is approximately 3/1 (take-off gross weight / take-off fuel) for long haul
and 6/1 for short haul flights.

« Example B777-300ER: 322 tons / 99 tons / 11 h
« Example B737-800: 66 tons /11 tons /3 h

Less Less
take-off fuel
fuel consumption



Fundamental behind our solution

Fixed
Economy Cruise Cost Function [nm/kg] \

CIHF(h,M)

Uncertainties in

ECCF =

* Aircraft performance model
*  Wind forecast
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State-of-art in Performance Modeling

* Top aircraft performance models widely used in real world &
operations: .

 Aircraft manufacturer’s models (highest fidelity?): .

* Performance charts to be utilized in ground based
planning tools.

drag and thrust (x 1000 1b)

* Flight Management Computers.
* Look-up tables. :

* Generic. Only customization is through performance factor
which is calculated by aging of aircraft. y

* Boeing’s BPS (Boeing Performance Software) - INFLT (In flight)

* Airbus’ PEP (Performance Engineer’s Program)
* Eurocontrol’s BADA (Base of Aircraft Data) Family 3 PAYLOAD: Yy
* BADA Family 4 EZFV 21962 W: (S) 237
* BPS and PEP are composed of look-up tables. ETOW 302679 |MTOW: (S) 3515
ELDW: 226481 |MLDW: (S) 25129t
. EAgégl is ereEsglt of curve fitting to the synthetic data generated REMF c555 |IMIN DIV: 6101
yBroan ' FMS INIT LOAD:
* BADAS3 is based on empirical approaches. KORD/LTBA
. . . LDG ELEV:0163FT PRF FACTOR%:2.9
* They are designed for “zero” condition. However, aircraft tend to e SR STTh I
deviate from their original performances. ndend oS ol it
. . . ALTN DIST |TIME |FL FUEL
* Operating at different regions, routes. M by | _ =
, LTBR (F) 106] 00:24] 130
* Maintenance.




State-of-art in Performance Modeling

» We observe two types of discrepancies:

» QOperational

» In BADA based trajectory predictions, a single type of thrust setting is assumed:
Maximum climb for climb mode, Low-idle for descent mode.

» Accelerations during cruise also cause differences.
« Parametric
* Projected as bias from the actual fuel flow.

~ e BADA — A 7
sl w— QAR 23 4 At "ot ”~ nd T W e
- "o ; ”\" ..,.~, =i - ek e "/
-~ et P e T b T i
s SN L \[\1 : | \/ o S
. ) . . [H " 040 o
E NS £, - I = il
-~ a _— BADA
'~ . ] 4./
l»l ‘ L X |“: l
Clinly Operatsonal | ) I Dyscs I
\.\ — , 1
e — v A p M i = b
AN Rl et e - - il
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Developing Tail Number Specific Digital-Twin
Performance Models

* Proposed network:

Pressure Ratio . N R VAP kL
M\ . ciw - :: ‘ [ ,"‘,, -& {
! () ™ : \! 1118 \
. =125 4 — pre | =
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.
aC ~ . Climd: F I ( ser Fuel Fiow sovnit: Fued Flow
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Mach Number . ’ ) Correction Factor , .~ . [, 4_., ;
. g ) AR [— . o [ 154 ) ' !
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i
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Aircraft Mass / ‘ TN 3 ”f{ ' Iii ha ' 3 N W =. A '
= : =1 | L ! iy

» Pressure ratio, temperature ratio, Mach number and aircraft mass are the
baseline features that BADA, BPS and PEP use to calculate fuel flow.

* Deep learning techniques are utilized: Mini-batch, Yogi (another version of Adam
optimization), L2 regularization.

« 98 tail-specific flights of a B777-300ER. 100k points for climb, 2M points for
cruise, 150k points for descent.
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« Aircraft: B737, B777, B787
+ Data: QAR data of 10,000+ flights.

QAR Trajectories of B738 Flights 16-23 November 2017

QAR Trajectories of B777 Flights 27.08.2017 - 29.12.2017
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Evaluation:

» Compare the estimated fuel flow with
the actual one, on unseen flights.

Short and long haul trajectories

* Benchmark with other aircraft
performance models.

B738W (3300 flights) B773 (100 flights)
MAE (kg/h) | MAPE% | MAE (kg/h) | MAPE %
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Application of Data-driven Models

« The updated baseline perfromance model is applied to the flight planning.
« Historical flight plans are re-generated using the update model as fuel burn estimator.
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Aircraft Performance and Wind Calibration Scheme
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Pros and Cons

 What has been achieved:

« State-of-the-art deep learning
techniques are good at
approximating non-linear
mappings given a proper
dataset.

* Our fuel flow estimator
represents the data quite well.

« The models is applicable to flight
planning.

 Drawbacks of ML:

« The model «naturally overfits» to
the data.

* The model works fine at the seen
flight regimes. What would be the
fuel flow in flight conditions that
are not in the data?

. Havin%data from these regions
would be ok, but it limits the
applicability. How can we solve
this without data?
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Physics-guided Neural Networks
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Physics-guided Neural Networks

» The labeled data do not cover the complete envelope.

* Include a physics based constraint to the optimization problem, so that the model also
learns that physical intuition. It needs to be implementable to the loss function [1].

 In our case, the physical guidance for cruise flight is the following equation:

M , m?
FOCE alM +Cl2MT§2

» Which stands for that fuel flow is proportional to the thrust required multiplied by the Mach
number. Thrust required is approximated through this equation.

» Any negative prediction of fuel flow is penalized.
 Final loss function is:

] = AlMSE(Yactual 'ypred) + /12]phy + /13]sign

Uzun M, Demirezen MU, Inalhan G. Physics Guided Deep Learning for Data-Driven Aircraft Fuel Consumption Modeling. Aerospace.
2021; 8(2):44.




Physics-guided Neural Networks

* What difference does it make?
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Next Steps....

.

- Aircraft performance calibration
and events from surveillance data
» Aircraft Health Monitoring B

« Advanced flight planning ; [ ———
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