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Multi-Agent Planning and Control
Ground, marine, aerial, space vehicles

Safety and Resilience under Uncertainty
Towards advancing autonomy
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» Resilient Multi-Agent Networks
« Information Reconstruction
 Formation Control

« Safety Control under Spatiotemporal Constraints
* Finite-Time Stability (FTS) and Fixed-Time Stability (FxTS)
» Fixed-Time Control Lyapunov Functions
* QP approach

 Future Research
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Network as a digraph G = (V. &) V=1{1,..., nyp ECVxV

Up to F-local adversaries
X Share malicious information and/or do not play consensus

Definition 1

Resilient Communication Graphs A set S C V is r-reachable (r € Zxg) if 3i € S such that |[V;\S| > r
e r-robustness and (r,s)-robustness

Definition 2

Resilient Filtering: W-MSR algorithm A digraph G is r-robust if for all nonempty, disjoint S}, 52 C V, at least
one subset is r-reachable.

Principle: Each agent

» sorts received information / Filter \
« filters out the F highest and F lowest values Collect  Sort

E k] max (Highest F states)
Consensus if the network is x [
i . Agent Dynamics s
° (2F+1)-robust or (F+1,F+1)-I’ObUSt : : x [K] x. [K] fl[Xl[k] lh[k]] X,[ld'l]v
%, 0]
Challenges: —|x[K] min (Towest F states)

Checking r-robustness and (r,s)-robustness is NP-hard K /

Consensus to arbitrary reference values is not guaranteed
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. [1]: k-circulant graphs have r-robustness and (r,s)-robustness
as functions of k

— Resilient, scalable network topologies [CDC17]

3-circulant
graph

*  [2]: Resilient consensus to arbitrary reference values in time-
invariant and time-varying graphs

— Resilient Leader-Follower consensus [ACC18]

25 -

. [3]: Resilient formation control
— In finite time under bounded control inputs [CDC18] ®op,,

15

*  [4]: Graph r-robustness and (r,s)-robustness as a MILP
— More efficient than state-of-the-art methods [ACC19]
— Approximate lower bounds of r- and (r,s)-robustness
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o Time invariant digraph D = (V,€), V ={1,..., n}

and information filters that ensure resilient
consensus?

. ‘m \T2—T1
o Agent states p, e R",i €V e ( - )
// Tl
A T2 //,Y.
@ & € R" Vi €V : Formation vectors (target locations) :
o 1, = pi(t) — & Vi € V: Center of formation O;
A 2
. >
1
. . . O‘\
« How can the formation be achieved in the .
presence of misbehaving agents? o
A 7
« What are the communication topologies : .70
| . 2
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Definition 1 (Resilient Directed
Acyclic Graph (RDAG))

Digraph D = (V, &) is RDAG with
parameter r € N if all of the following
properties hold:
@ There exists partitioning of V into 1) The size of
So,...,Sm CV, m € Z such that the layer S, is
[Sgl =7 at least r
@ ForeachicS;, 1< j<m, 2) In-neighbors
V: C UJA';IO 5 are only from
layers above
@ ForeachicS;, 1<j<m, 3) Each agent
Vil =7 has at least r

in-neighbors
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M | MICHIGAN ENGINEERING Resilient Formations: Information Filtering

1D W-MSR
Filtering

Collect  Sort

State Update
(Agent
dynamics)

xi[t + 1]

The norm-based W-MSR
filtering modifies the above
version by collecting and
sorting the neighbors’ normed
information from highest to
lowest value, and removing only
the F highest values

Algorithm 1 Continuous-Time Filtering

procedure UPDATEFILTEREDLIST
Calculate 735 = |75 — w|| Vi€ Vi
if t =meq. m € Zxq, €g >0 then
Sort 7; values such that 75, > ... > Tijiv,)
Ri(t) « {] 1Tij € {Tijl"+1""'Tij\Vi\}}

(max) [ . .
o R;(t): Filtered list after

T1j(F+l)

_> Rz (t) t =meg

(min) |Tiv,|

removing F' maximum elements

o Update on discrete instances
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Closed loop system:

25

Ty — Uy,
ui(t) = vi(t) Z wij(t) (5 — ) |lm — )| 0<a< 1 ‘ZDD:,:DD
JER() B
15 =
where i h 8
oi(t) g
@ vi(t) = Tl g 2

@ Saturation function:

oi(t) = min{||u? (t)||, upr},

(1) = Y wi(t)(r(t) = @)l — 7" 0<a <
EP t ) . . , X Misbehav:anefenders
S s -10 5 0 5 10
X Position

o Input satisfies bounds ||u;|| < upr Vie V

RDAG of 80 agents
r=16
Consider a digraph D which is an RDAG with parameter 3F' + 1, where F= 55|OC§: moldel
So = L and A is an F-local set. Under the proposed closed loop M = 5 SUblevels

dynamics, T; will converge to T, in finite time for all normal agentsi € N
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Leaders:
h':‘ L » Determine trajectory for
/\/ o center of formation (COF)
affl » Encode COF trajectory into
ale) = Gng 0010+ 0l ..+ gy ay.1 unique parameters

d(8) = ay o+ oy a8+ oy 28® + .. 4 ayps” : . -
e aﬁgn ROJ.EIQ—)(;{zb(t) f(t (;“:) :  Resiliently transmit
8. X X s 8 — ,to,t .
L et o P A parameters to out-
£ a) Y -(l'y.p- ;» .
Vector of parameters |—> nelg h bo rs

Local trajectory regeneration

B [ Followers:
t .
_ Formation offset af 1 1 ! * Receive and accept
d (a x, . ope
[;d’((sq based on local | i ‘i‘fée;; AZ parameters only if resilience
q(f) formational franle Algorithnl Crlterla Sat|5f|ed
R . « Reconstruct unique
Qg p
¥ [y.p ] trajectory of COF
& . :
gt Add local formation offset to

obtain local desired
trajectory

 Track local trajectory
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Multi-Source Resilient Propagation Algorithm [8]
. RDAG with parameter (2F+1) 1 2 3
. F-local misbehaving agent model g

* Including misbehaving leaders
« S, layer comprises of leaders only

«  Example: RDAG with r=3
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Multi-Source Resilient Propagation Algorithm [8]

*  Leaders transmit message to out-neighbors

‘ & o<
e

\| RN | :
g @

< v | 4 A‘I |
g? g°
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Multi-Source Resilient Propagation Algorithm [8]

*  Leaders transmit message to out-neighbors

. : : 1 .
*  Followers accept message if identically received * Q‘” Q‘"

from at least (F+1) in-neighbors
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Multi-Source Resilient Propagation Algorithm [8]

*  Leaders transmit message to out-neighbors

S s
*  Followers accept message if identically received * Q‘” 9

from at least (F+1) in-neighbors

»  Accepted messages by followers transmitted to
their out-neighbors, and so on
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Example:
Multi-Robot
Mission Planning

// LTL/STL Specification ‘ \\\
/ + \
% = £, )

u] eV x} € Xs

Multi-Agent

Spatiotemporal Control Synthesis: Overview

S={xIh((x)<0}

l

Single-Agent

o Safety (set invariance)
State trajectories must remain in a safe set

o Performance (set attractivity)
State trajectories must reach desired sets
within specified time intervals

Spatiotemporal Control: Approach
*  Synthesis tools:
Quadratic Programs (QPs) for
FTS/FXTS/PTS [9, 10]

Modified Sontag’s Formula for PTS
(ACC20 Paper WeB18.5) [11]

* Analysis tools:
FTS of Switched/Hybrid Systems [12]

» K. Garg, E. Arabi, and D. Panagou
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Let © = f(x) + g(x)u where z € R",uc U C R™ S;={x1h;(x) =0}

Assume that:

* There exists a safe set S = {x € R" | h(z) < 0}
where /(x) 1s continuously differentiable

e There exist sets S; = {x € R" | hy(x) < 0},i € {0,1,...,N}
where /,(x) are continuously differentiable

e SsNSo#0,5NSi41#0, for0<i<N-1 S,={xlh(x)<0}

 There exist time intervals [ti,t;+1) such that t;.1 —t; > T

Problem statement (Problem 1)
Find a control input u(t) € U = {Ayu < by} such that for z(0) € S; N Sy,

* x(neS,;, V=0,
c x(nesS;, Vel 1)
\
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Finite-time Stability (FTS) (Bhatand Bernstein, 2000)

Let = f (I) . Theorem 1. Suppose there exists a positive definite function
where f is continuous, f(0) =0 V' for system (1) such that

x(t)

V(z) < —cV(x)P,

with ¢ > 0 and 0 < 3 < 1. Then, the origin of (1) is FTS
Asymptotic convergence with settling time function

Exponential convergence

V (x(0))1—#

T(x(0)) <
Finite-time convergence (I( )) N ('(1 - B)
Fixed-time Stability (FXTS) (Polyakov, 2012) Prescribed-time
t ility (PT
x(t) Theorem 1 ( [2] ). Suppose there exists a positive definite Stability (PTS)
function V' for system (1) such that Time of
- . . . convergence T can
o N = AP \q
Finite-time convergence | (.I ) e al (.I ) b\ (.I ) be chosen
Fixed-time convergence with a,b > 0, 0 < p < 1 and q > 1. Then, the origin of (1) arbitrarily by the
is FxTS with continuous settling time T that satisfies Vel
Also called
= ! + 1 . predetermined or
—a(l-p) blg—1) predefined.
t



M MICHIGAN ENGINEERING Control Barrier Functions

UNIVERSITY OF MICHIGAN

Reciprocal Control Barrier Functions (Ames et al, TAC 2017)

Definition: Let = f(x) + g(z)u , where f(z), g(z) are locally Lipschitz
reR" uelUCR™

A continuously differentiable function B : Int(C) — R is called a Reciprocal
Control Barrier Function (RCBF) for the set C if there exist class K functions
aq, a2, a3 such that for all = € Int(C)

1 1
TEE - )

inf [LyB(2) + LyB(2)u — a3(h(z))] < 0

Lettheset Krepr(x) ={ueU: LyB(x)+ LyB(z)u — asz(h(z)) <0}
Then any locally Lipschitz u : Int(C) — U such that u(z) € Kpepp(x)
will render Int(C) a forward invariant set.
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Let the following CLF-CBF QP

: 1 7 T
*(x) = —u H F
wE) =8 g g T F@)

s.t. LiV(z) + LgV(x)u+ c3V(x) — 0
)

L;B(x)+ L,B(z)u — a(h(z)

IAIA

0
0

Theorem [Ames et al, TAC 2017]:
Suppose that:

the vector fields f and g of the control system,

the gradients of the RCBF B and CLF V,

the cost function terms H(x) and F(x) in (CLF-CBF QP)
are all locally Lipschitz. Suppose furthermore that

L, B(x) = 0 for all x € Int(C).

Then the solution, u*(x), of (CLF-CBF QP) is locally Lipschitz continuous
for x € Int(C). Moreover, a closed-form expression can be given for u*(x).
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» Fixed-Time Control Lyapunov Functions
« QP approach

 Future Research
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Let © = f(x) + g(x)u where z € R",uc U C R™

Definition: The continuously differentiable function V' : R" — R
is called a Fixed-Time Control Lyapunov Function wrt a set S
(FxT-CLF-S) of the system with parameters a,, a,, b,, b, if

1) It 1s positive definite wrt a closed set S, i.e.,
V(z) >0forx ¢ S
V(z) =0 for x € 0S

ii) i%f[LfV(a:) + L,V (z)u] < —a1(V(2))* — as(V(2))"2, Vo ¢ Int(S)

1 1

- <T
al(bl s 1) CL2(1 = bg)

where ay,a9 > 0, by > 1, 0 < by < 1 satisfy

with T being a user-defined time.
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Theorem [9]

If there exist a;1,a;2,4,4; > 0, bj; > 1,0 < b;; < 1 and control input u such that

_ 1 1
T = max + C
LEX {ai1(bi1 -1)  a;p(A- bil)} (Co)

inf{Leh + Lyghu + 2h} <0 (C))

ueu

inf{Lrh; + Lghju + LR} <0 (Cy)

ueu

ig{’{l‘thl + Lyhiyqu} < —a;; max{0, hyy1}%1 — a;; max{0, hyy 1302 (C3)
u

\ hold for t € [t;, t;+1), then, the control input u(t) solves Problem 1. /

« (, ensures exact convergence before t = t;,, (FXTS for settling time T)
« (yresultsinto h(x) =0= h(x) < 0 = forward invariance of set S

«  C, results into h;(x) = 0 = h;(x) < 0 = forward invariance of set S;

e C,resultsinto Ajq < —ailhffrll — aizhf’fl = FxTS to set S;,4

« (5 also results into forward invariance of S;,; once x(t) € S; ;4
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A Quadratic Program (QP) to solve Problem 1

Theorem [9]

Let the solution to the following QP defined for t € [t;, t;41):
. 1,
min  _—v
v,ai1,8i2,4;,6 2
S.t. thi + Lghl-v + Aihi < 0,
Lehipq + Lghiyqv < 8hyyq — a3 max{0, hyy1}°0 — a;, max{0, hy,}%i2,
Auv < by,

< aj;(bj; — 1) < a;(1 = byp),

~i N

be denoted as [7;(t), a;q, @iz, An, A;]. Then, u(t) = v;(t) for t € [t;, t;,1) solves Problem 1. /
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Theorem (Robust FxTS Theorem)

Let V :R™ — R be a C', positive definite function, satisfying

V < —Ctlval — Ct-_)_Vaz —+ CgV,

with ¢1,co >0, a; =1 + ﬁ ary =1— ﬁ for some 11 > 1, along the system
trajectories. Then, there exists D C R" such that for all x(0) € D, the
system trajectories reach the origin in a fixed time I'. Furthermore, if

cy3 < 2\/c1c2, and V' is radially unbounded, then D = R™.

o Relaxation of condition V < —1V* — V22

@ Robustness w.r.t. additive vanishing disturbance if origin of nominal
system is FxTS

@ Helps guarantee feasibility of QP
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Consider the following optimization problem:

1 )
min —|lu||?+p10% + p2d3 01,02 - slack terms
0, 6,0, 2
Bt Ayu <b,, Control input constraint

Lthg(x) + Lghg(x)u <d1hg(x) — arhg(z)" — ashg(z)??, PT-CLF condition for Sg
Z.CBF condition for Ss

where p1.ps > 0,71 =1+ #ij and 72 =1 — ;l: with g > 1, a1 = a9 = 57

/

o Slack terms 01, d2 — feasibility for all x

@ 01 dictates region of convergence K. Garg, E. Arabi, D. Panagou “Fixed-time
control under spatiotemporal and input

constraints: A QP based approach,”

@ Convergence time < T
submitted to IEEE TAC, under revision.
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Theorem 5. Let Assumption 3 hold. If the solution of (10),

given as (v*(-),07(-),05(+)), satisfies

01 (z) < 2y/aqae, V€ Sg, (1)

then, for all x(0) € Sg, the closed-loop trajectories x(t) under
u(-) = v*(-) reach the set S¢; in a fixed time, while satisfying
safety requirement, i.e., x(t) € Sg for all t > 0. If (11) does
not hold, then there exists 1D C Sg such that for all x(0) € D,
the closed-loop trajectories satisfy x(t) € Sg forall t > 0 and
reach the goal set Sq; within a fixed time.

Assumption 3: The strict
complementary slackness holds.

K. Garg, E. Arabi, D. Panagou “Fixed-time
control under spatiotemporal and input
constraints: A QP based approach,”
submitted to IEEE TAC, under revision.
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Example: STL Mission Synthesis

Simulation Results

System Dynamics:
X.'i = U;
Objective:

(x1,) B Gpogr,1®s N Fior 192 A Firyr,1®3 A Firy 11 ®a A Firy 1,1$1
(x2,t) B Glor,1®s N Flor,1P2 A Firyr,1®1 A Firyr1®a A Firy 1,193

Equivalently,
(0,200 €5, = {x, (O [Ix]| o« < 2,|Ix,]|, = 1.5} for allt >0,

and maintain a minimum separation d,, at all times
* On or before a given T; satisfying 0 < T; < oo, agent 1 and 2

should reach the square C, and so on

T2

...................

30
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Simulation Results

T
o

Construction of sets S, S; Closed-loop trajectories Control input and inter-agent distance
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 Future Research
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Problem 1. Find a control input u;(t) € U; = {ve R™;
| Ui min, < vj = ui,ma:rjuj = 1,2,...,??1}, t >0,
such that for all z;(0) € Sg,,

e 2;(T) € Sg, for some user-defined T > 0, for all i =

1,2,....N;
o ||lzi(t)—x;(t)|| > ds, forall t > 0, for all i # j, where
ds > 0 is a user-defined safety distance; 301
e zi(t) € Ss,, forallt >0, forall i =1,2,...,N. e
10+
2 0
-10
207 ot
30— — ) G (N S S S S S SN SN SN S
-30 -20 -10 0 10 20
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« CBF condition for set invariance

2(8"() 00+ D) = —alnia)

a : any locally Lipschitz extended class-K, function

« Worst-case adversarial agents: « Best-case control action for normal agents:
. [On(E) sup Oh(7)
inf —
) = argint 7(0) = angsup | S50 (402) + i)
up(0) = argint | 20 (7 01) + gn(an)un)] rgoup | <5 -
* Intent: drive h(Z) to negative value * Intent: drive h(Z) to positive value
(violate set invariance) (preserve set invariance)

S s | (e e[+ 3 nf | T el + o) | 2 ~a (@)

35
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Environment .
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H ! I i
1 1 v
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: i H information | |
! 1 R n
H 1 1~ « . o . . e . T
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! R ———— d i
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’ ‘ uncertainty
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