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Networked Operation of Heterogeneous Dynamic Systems

Why ”distributed intelligence”?
Information is distributed
Actions are distributed
more efficient
more resilient
Plug-and-play operation is essential for many operations

Consensus: all the ”chosen” state variables (i.e., outputs) converge to the same value (or
certain property). Applications:

synchronization (velocity, frequency, etc)
rendezvous, formation control, ...
fair distribution of resources, ...
distributed estimation of certain quantity
distributed search for a global optimal solution of any kind

Consensus can be reached by collaborative entities (by employing cooperative control or
distributed optimization or distributed estimation)

Applicable to multi-entity cooperative games
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Cooperative Behaviors: Consensus

Bird flocking:

Formation flying of UAVs:
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Standard Stability Analysis

Linear systems: given x(t0) = x0,

ẋ = Ax, x(t0) = x0;

or
xk+1 = Dxk.

Eigen-analysis: solutions λi from

det[λI −A] = 0, det[λI −D] = 0.

Stability: system is asymptotically stable if, for all i,

Re[λi(A)] < 0, |λi(D)| < 1.

Example:

ẋ = Ax, A =

[
0 1
−kp −kv

]
.

∆(λI −A) = λ2 + kvλ+ kp = 0.

The system is asymptotically stable if and only if kv , kp > 0.
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Example: Simple Systems

Spring-damper system:

mẍ = −bẋ− kx+ F,

where F is the control, b is the damping, and k is the spring constant.

Typical tracking control is:
F = ẍd + bẋd + kxd.

The closed loop system becomes: e = x− xd,

ë+ kv ė+ kpe = 0,

where kv = d/m and kp = k/m.

Question: What happens if the systems are interconnected intermittently?
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Stability and Robustness under Switching

Question: What systems can be networked in a plug-and-play manner?
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A Simple Cooperative System

First-order (agent) model: x ∈ <n,

ẋi = ui, =⇒ ẋ = u.

Communication network model:

S(t) = [sij(t)] ∈ <n×n+ , sii ≡ 1.

Leaderless linear cooperative control design (consensus law):

ui =
n∑
j=1

sij(t)[xj(t)− xi(t)], or u = −L(t)x(t),

where L ∈ <n×n is the Laplacian:

Lij(t) =

{
−sij(t) i 6= j∑
l6=i sil(t) i = j

Conclusions:
(a) No matter what S(t), the system is uniformly bounded.
(b) If the cumulative graph of S(t) is strongly connected, consensus is reached.
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Why Stability/Consensus Is Guaranteed?

Closed-loop dynamics of the ith agent:

ẋi =
n∑
j=1

sij(t)[xj(t)− xi(t)].

Let i∗ be the index such that
xi∗ (t) = max

i
xi(t),

then, for all j,
si∗j(t)[xj(t)− xi∗ (t)] ≤ 0

and the inequality is strict unless si∗j(t) = 0 or xj(t) = xi∗ (t). Therefore,

ẋi∗ ≤ 0,

and the maximum never increases and it always decreases if there is any connection with
non-maximum agents.

Similarly, the minimum never decreases and it always increases if there is any connection with
non-minimum agents.
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A Leader-Followers Design

First-order (agent) model: x ∈ <n,

ẋi = ui, =⇒ ẋ = u.

The leader state is designated as x0, and communication matrices are

S(t) = [sij(t)] ∈ <n×n+ , sii ≡ 1, si0(t) ∈ <+, s0i ≡ 0.

Leader-follower linear cooperative control design (consensus law):

ui = si0[x0 − xi(t)] +
n∑
j=1

sij(t)[xj(t)− xi(t)].

Conclusions:
(a) No matter what sij(t), the system is uniformly bounded.
(b) If the cumulative graph is strongly connected, consensus of x0 is reached.

How about more general classes of systems?
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Dissipativity Theory

Heterogenous systems:
żi = Fi(zi, vi), yi = Hi(zi),

where
vi = vsi (zi) + ui.

Dissipativity (Willems): for p.s.d. storage function Vi and a supply rate Φi(·),

Vi(zi)− Vi(zi(0)) ≤ −
∫ t

0
Φi(zi, ui)ds,

where, if Φi(·) is quadratic,

Φi(zi, ui) = −ηi(zi) + uTi yi +
εi

2
‖ui‖2 −

%i

2
‖yi‖2.

Common forms of dissipativity:

Passivity: ηi(·) p.s.d., εi ≤ 0 and %i ≥ 0.

L2 gain: ηi(·) p.s.d., %i > 0, and εi > 0.

Passivity shortage (PS):
Input PS (input-feedforward passive): ηi(·) p.s.d., εi > 0, and %i ≥ 0.
Output PS (output-feedback passive): ηi(·) p.s.d., εi ≤ 0, and %i < 0.
PS: ηi(·) p.s.d., −1 ≤ εi%i < 0.
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Passive Systems

Heterogenous systems:
żi = Fi(zi, vi), yi = Hi(zi),

where zi ∈ <ni , vi, yi ∈ <m, ∂H(zi)/∂zi has rank m, and

vi = vsi (zi) + ui.

Passivity: for p.s.d. storage function Vi and p.s.d. function ηi,

Vi(zi)− Vi(zi(0)) ≤ −
∫ t

0
ηi(zi)ds+

∫ t

0
uTi yids.

Linear systems:
żi = F ci zi +Giui, yi = Hizi,

positive real

relative-degree-one

minimum-phase

Lyapunov function Pi: GTi Pi = Hi
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Input Passivity-Short Systems

Heterogenous systems:
żi = Fi(zi, vsi (zi) + ui), yi = Hi(zi).

Input passivity-short system: for p.s.d. storage function Vi, p.s.d. function ηi and constant
εi ≥ 0,

Vi(zi)− Vi(zi(0)) ≤ −
∫ t

0
ηi(zi)ds+

∫ t

0
uTi yids+

εi

2

∫ t

0
‖ui‖2ds,

where εi is the so-called impact coefficient.

(−εi/2) is the slope above;
as εi →∞, the whole plane is covered.

(a) Most Lyapunov stable systems
(b) All Lyapunov-stable linear systems can be
made PS under an output feedback control

Z. Qu TCAC Workshop @ 2020 ACC 17 / 41



PS Systems with Self Output Feedback — an L2 Gain
Heterogenous systems:

żi = Fi(zi, vsi (zi) + ui), yi = Hi(zi).

The ith system is said to be PS and have an L2-gain %i if, for some %i, εi > 0,

Vi(zi)− Vi(zi(0)) ≤ −
%i

2

∫ t

0
‖yi‖2ds+

∫ t

0
uTi yids+

εi

2

∫ t

0
‖ui‖2ds.

For linear system G(s), it follows that

%i

[(
Re[G(jw)]−

1

%i

)2

+ Im2[G(jw)]−
1

%2
i

]
≤ εi.

If %i → 0, we recover the input PS result.

Admissible area: Inside the cycle centered

at 1/%i and of radius
√
εi/%i + 1/%2

i .

For a large enough value of ε, the circle will
contain Nyquist plot of any Hurwitz system.

Z. Qu TCAC Workshop @ 2020 ACC 18 / 41



Physical Meanings of ε and %

Consider the linear system

ẋ = Ax+Bu, y = Cx, A =

[
0 1
−w2

n −2ξwn

]
, B =

[
0
1

]
, C =

[
1
0

]T
.

It follows from Lyapunov function

V = xTPx, P =

[
p1 p2

p2 p3

]
.

that
V̇ ≤ −

%

2
y2 + uy +

ε

2
u2,

if and only if p1 > 0, p1p3 > p2
2 and

W
4
=

 −2w2
np2 + 0.5% p1 − 2ξwnp2 − w2

np3 p2 − 0.5
p1 − 2ξwnp2 − w2

np3 2(p2 − 2ξwnp3) p3

p2 − 0.5 p3 −0.5ε

 < 0.

Solutions of ε and % using Lyapunov function from ATP + PA = diag{−wn, −1/wn}I:

% = wn =⇒ ε =
1

wn

(
1−

1

wn

)2

+ 2
1

(2ξwn)2wn
.

As ξ becomes smaller, ε increases.
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Why PS Systems but not Passive Systems?

Some systems are passive:
First-order Hurwitz systems (e.g., 1/(s+ a)) are passive.
Parallel connection of two passive systems is passive.
Negative loop connection of two passive systems is passive.

Most high-order systems are not passive even though they consist of passive elements:
Serial connection of two passive systems is generally not passive, e.g., 1/(s+ 1)2.
Time delay is not passive
Discretization of passive systems is typically not passive, e.g., 1/s.

Passive short (PS) systems form a much broader of systems:
All Lyapunov stable linear systems are either PS or can be made PS under an output

feedback control
PS systems can be interconnected: parallel, series, negative feedback loop, positive

feedback loop, etc.

The passive short framework applies directly to discretized systems.
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Fundamental Property of Passivity-Short Systems

System i

System j

iu

ju

iy

jy +

+

yk

yk
−

−
PS

PS

Consider a positive feedback connection of two PS systems.
Cooperative stability (consensus) is ensured if

0 < ky < 2/(εi + εj).

Impact on networked operation is revealed.
Asymptotic stability could be further concluded
if the systems are zero-state observable.

Proof: Consider

V
4
= Vi + Vj , ui = ky(yj − yi), and uj = ky(yi − yj). Then,

V ≤
∑
k=i,j

[
Vk(zk(0))−

∫ t

0
[ηk(zk) + uTk yk +

εk

2
‖uk‖2]ds

]

≤ V (0)−
1

2
[2− (εi + εj)ky ]ky

∫ t

0
‖yi − yj‖2ds.

Hence, we have
zi, zj ∈ L∞, (yi − yj) ∈ L2, (yi − yj)→ 0.

Other interconnections (e.g., negative feedback connection) work as well.
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Control of Uncoupled Heterogeneous Systems Using an
Information Graph

Communication graph: S(t) with Sii ≡ 1 and Sij ∈ {0, 1}.

Network topology: Laplacian L(t), where D = diag{S1} and L = (D − S).

Heterogeneous systems:
żi = Fi(zi, vi), yi = Hi(zi),

each of which is passivity short with impact coefficient εi.

Cooperative control protocol:

ui = kyi
∑
j

(yj − yi)Sij .

Impact Equivalence Principle: As for fictitious systems ẏi = ui, consensus is ensured if the

graph has at least one global reachable node and kyi ≤ ky (which depends upon max εi).

If L is irreducible and fixed,

ky =
λ2(ΓL+ LTΓ)

2(maxi εi)λmax(LTΓL)
.

where γT1 L = 0, Γ is a diagonal matrix of entries in γ1.

Advantages: networked systems, modularized design, plug-and-play operation.
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Example: Discrete-time 3-D Attitude Synchronization

Special Orthogonal group: SO(3)
4
= {R ∈ <3×3|RRT = I3, det(R) = 1}.

Given inertial frame
∑
w, attitude of body i (body frame

∑
i) is denoted by exponential

coordinate eξ̂θwi , where ξwi ∈ <3 and θwi ∈ (−π + ε, π − ε) are the axis and angle of the
rotation matrix, respectively.

so(3)
4
= {S ∈ <3×3|ST = −S} is the Lie algebra of SO(3).

Operator ˆ : <3 → so(3) (whose inverse is denoted by )̌ is defined by

â = (a)ˆ
4
=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .
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Discrete-time 3-D Attitude Synchronization

Angular velocity of body i with respect to
∑
w is

ωbwi

4
=
(
e−ξ̂θwi ėξ̂θwi

)̌
.

A precise discrete-time model of rigid body motion to preserve the SO(3) structure is

eξ̂θwi
(k+1) = eξ̂θwi

(k)e
hω̂b

wi
(k)
.

Passivity-short property:

φ(eξ̂θij(k+1))− φ(eξ̂θij(k)) ≤
(

sk(e
hω̂b

wi
(k)

)ˇ
)T

sk(eξ̂θwi
(k))ˇ + ‖sk(e

hω̂b
wi

(k)
)ˇ‖2,

where

sk(eξ̂θ) =
1

2
(eξ̂θ − e−ξ̂θ), sk(eξ̂θ)ˇ = ξ̂ sin θ, sk(e

hω̂b
wi

(k)
)ˇ = ωbwi

sin(h‖ωbwi
‖)

‖ωbwi
‖

.
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Discrete-time 3-D Attitude Synchronization Law

Control objective:

lim
k→∞

φ(eξ̂θij(k)) = 0,

where

eξ̂θij
4
= e−ξ̂θwi e

ξ̂θwj , φ(eξ̂θij )
4
=

1

4
‖I3 − eξ̂θij ‖2F =

1

2
tr(I3 − eξ̂θij ).

Discrete-time synchronization law (based on passivity shortage):

sk(e
hω̂b

wi
(k)

)ˇ = hki
∑
j∈Ni

wijsk(ehξ̂θij(k))ˇ.

Stability condition:

ki <
sin ε

2h|Ni|maxj∈Ni
wij

.
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Simulation of Discrete-time 3-D Attitude Synchronization

20 rigid bodies with h = 0.02 sec, randomly generated initial conditions, ε = π/10:
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Interconnected Heterogeneous Systems

Interconnected heterogeneous systems:

ẋi = Ai(xi)xi +Bi(xi)vi +
∑
j∈Ni

Hij(yi, yj)(yj − yi), yi = Ci(xi)xi.

Local control: vi = −Ki(xi)xi + ui, which yields Ai(xi) = Ai(xi)−Bi(xi)Ki(xi).

If

M i(xi, yj) =



A
T
i (xi)Pi + PiAi(xi) + ρiC

T
i Ci

−
∑

j∈Ni

(PiHijCi + C
T
i H

T
ijPi)

· · · PiHij(yi, yj) · · · PiBi − CT
i

.

.

.

.

.

. 0

.

.

. 0

HT
ij(yi, yj)Pi 0 −εijI 0 0

.

.

.

.

.

. 0

.

.

. 0

BT
i Pi − Ci 0 0 0 −εiiI


≤ 0,

then

V̇i ≤ uTi yi +
εii

2
‖ui‖2 −

ρi

2
‖yi‖2 +

1

2

∑
j∈Ni

εij‖yj‖2.
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Modular and Data-Driven Control Design

Network-level model:

V̇i ≤ uTi yi +
εii

2
‖ui‖2 −

ρi

2
‖yi‖2 +

1

2

∑
j∈Ni

εij‖yj‖2.

Local design criterion:

min
∑
j∈Ni

αijεij

subject to αij > 0 and M i(xi, yj) ≤ 0.

Networked control on an information graph:

ui = −kci
∑
j

Scij(t)(yj − yi) = −KcLy.

Cooperative control design criterion: Find kci such that

Q = ΓLT + LΓ− LTKcWL+ Ψ > 0,

where Ψ = diag{ψi} with

ψi =
γiρi

kci
−

∑
j=1:n; i∈Nj

γj

kcj
εji,

Advantages: networked systems, modularized design, plug-and-play operation, and data-driven.
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Destabilizing Attacks

A system under attack:
ẏ = −Lsy + Lad, ḋ = Fad+Bay

Consider the case La = Ls and the injection model is a low-pass filter with Fa = −λaI and
Ba = I. Then y grows unbounded for all λa ∈ (0, 1)

The overall system is[
ḋ
ẏ

]
=

[
−λaI I
Ls −Ls

] [
d
y

]
⇒ det[s2I + (Ls + λaI)s+ (λa − 1)Ls] = 0

which is unstable for λa < 1.

There are numerous choices of Fa, Ba that leads to instability.

⇒ need to make the system robust to any possible attacks.
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Example: A Two-Node Robust Cooperative System

Consider a network with two nodes interconnected with a hidden layer:[
ẏ1

ẏ2

]
=

[
−1 1
1 −1

] [
y1

y2

]
+ β

[
1 −1
−1 1

] [
z1
z2

]
+

[
d1

d2

]
[
ż1
ż2

]
=

[
−1 1
1 −1

] [
z1
z2

]
− β

[
1 −1
−1 1

] [
y1

y2

]
which can be rewritten as[

ẏ1

ż1

]
=

[
−1 β
−β −1

] [
y1

z1

]
+

[
1 −β
β 1

] [
y2

z2

]
+

[
d1

0

]
[
ẏ2

ż2

]
=

[
−1 β
−β −1

] [
y2

z2

]
+

[
1 −β
β 1

] [
y1

z1

]
+

[
d2

0

]
node 1 node 2

d
cooperative system

  hidden layer
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Intuitive Explanation of Competitive Interaction

node 1 node 2
d

Transfer function for node 1 from attack/disturbance d1 to y1 is given by

Y1

d
=

s+ 1

s2 + 2s+ 1 + β2

The resonance frequency is 1 + β2. Hence, β ↑ yields resonance frequency ↑.

Robustness design against attacks: 1) superiority of information access; 2) design virtual nodes
so they do not impact normal operation of the system; 3) automatic activation when attacks
appear anywhere in the system; 4) synthetic anchors to maintain system stability while state
estimation is in progress; 5) Mitigation measures embedded

Z. Qu TCAC Workshop @ 2020 ACC 36 / 41



Table of Contents

1 Introduction to Cooperative Control
Background
Standard Results
Consensus Laws

2 Nonlinear Plug-and-Play Control Design
Passive and Passivity-Short (PS) Systems
Plug & Play Networked Operation of PS Systems
Application to Attitude Synchronization
Control of Interconnected Heterogeneous Systems Using an
Information Graph

3 Resilient Networked Control Against Attacks
A Dynamic Attack Model
Robustification: Virtual Nodes and Synthetic Anchors
Robustification of Cooperative Systems Against Attacks

Z. Qu TCAC Workshop @ 2020 ACC 37 / 41



Topology Condition on Hidden Layer Design

∑h ∑o

z

∑s
G

y

K

y

z

Networked system nodes y (Σs), virtual
nodes z (Σh), observation nodes (Σo):

ẏ = −Lsy + βKz + Lsd,

ż = −Lhz − βGy,

ḋ = Fad+Bay,

where:
β > 0: design parameter

Lemma: If d = 0, y → 1νTs1x(0)/(νTs11) as t→∞ provided that:

ΓhG = KTΓs, and νTs1K = 0,

where Γs = diag{νs1} and Γh = diag{νh1}.

Note: G1 = 0 =⇒ consensus value of z is not impacted by y

Sketch of proof: Lyapunov candidate V (y, z) = yTΓsy + zTΓhz
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Robust Design of Cooperative Systems

System:
ẏ = −Lsy + βLsz + Lsd,

ż = −Lhz − βΓ−1
h LTs Γsy,

ḋ = Fad+Bay,

Theorem: y ∈ L∞ for all possible choices of Fa and Ba and, by increasing β, y converges to an
arbitrarily small neighborhood

lim
t→∞

y(t) =
νTs1y(t0)

νTs11
1 + (I + F−1

a Ba + β2Mh)−1

[
(c1 + βc2)1− F−1

a Ba
νTs1y(t0)

νTs11
1

]
,

where Γ−1
h LTs Γs = LhMh, and c1 and c2 are some constants.

Sketch of proof: V = βỹTΓsỹ + βz̃TΓhz̃ + dTPad+ 2z̃TΓhd,

˙̃y = −Ls(ỹ − βz̃ − d),

˙̃z = −Lh(z̃ + βMhỹ),

ḋ = Fad+Baỹ.
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Identification of Stealthy Attacks

When there is no attack

y → 1νTs1y(t0)/(νTs11), z → 1νTh1z(t0)/(νTh11).

Under attacks, states y, z deviate from above values by ỹe, z̃e

Let A with dim(A) = m < n be a set of nodes being attacked and

de = (x̃e − βz̃e)− c11

which is not unique.

If m ≤ bn/2c, the set A can be found uniquely by solving ĉ1 in

ĉ1 = argminc1‖(x̃
e − βz̃e)− c11‖l0

where ‖y‖l0 is the number of non-zero elements in vector y.

Note: νs1, νh1 can be estimated distributively.
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