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Networked Operation of Heterogeneous Dynamic Systems

Why "distributed intelligence”?
Information is distributed
Actions are distributed
more efficient
more resilient
Plug-and-play operation is essential for many operations

Consensus: all the "chosen” state variables (i.e., outputs) converge to the same value (or

certain property). Applications:
synchronization (velocity, frequency, etc)
rendezvous, formation control, ...
fair distribution of resources, ...
distributed estimation of certain quantity
distributed search for a global optimal solution of any kind

Consensus can be reached by collaborative entities (by employing cooperative control or

distributed optimization or distributed estimation)

Applicable to multi-entity cooperative games
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Cooperative Behaviors: Consensus

Bird flocking:

Formation flying of UAVs: EE———
s Vinualtoador

e
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Standard Stability Analysis

Linear systems: given z(to) = xo,
= Az, xz(to) = xo;

or
Tk4+1 = Dl‘k.

Eigen-analysis: solutions A; from
det[A\] — A] =0, det[]A] — D] =0.
Stability: system is asymptotically stable if, for all 4,
Re[X;(A)] <0, |[Ni(D)] < 1.
Example:
i=Azx, A= [ _(])cp o ]
AN — A) = X2 + koA +kp = 0.

The system is asymptotically stable if and only if ky, kp > 0.
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Example: Simple Systems

Spring-damper system:
mi& = —bt—kx+ F,

where F' is the control, b is the damping, and k is the spring constant.

Typical tracking control is:
F =i+ bi? + ka?.

The closed loop system becomes: e = z — x4,

€+ kyé + kpe = 0,

where k, = d/m and k, = k/m.

Question: What happens if the systems are interconnected intermittently?
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Stability and Robustness under Switching

Question: What systems can be networked in a plug-and-play manner?
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A Simple Cooperative System

First-order (agent) model: z € R",
T; =u;, — T =u.
Communication network model:
S(t) = [si;(t)] € %ixn, 84 = 1.
Leaderless linear cooperative control design (consensus law):
n
wi =Y sii(t)x;(t) —@i(t)], or u=—L(t)x(t),
j=1

where L € R*X™ is the Laplacian:
_{ s i
L;i(t) = . .
() { D1z sat(t) 1=

Conclusions:
(a) No matter what S(t), the system is uniformly bounded.
(b) If the cumulative graph of S(t) is strongly connected, consensus is reached.
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Why Stability /Consensus Is Guaranteed?

Closed-loop dynamics of the ith agent:
n
2= sij(t)[z;(t) — zi(t)).
j=1
Let ¢* be the index such that
i+ (t) = max z; (),
1

then, for all j,
six()[z; (1) — 2= (¥)] <0

and the inequality is strict unless s;x;(t) = 0 or x;(t) = x;= (t). Therefore,
i+ <0,

and the maximum never increases and it always decreases if there is any connection with
non-maximum agents.

Similarly, the minimum never decreases and it always increases if there is any connection with
non-minimum agents.
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A Leader-Followers Design

First-order (agent) model: z € R,
Ty =uy,, —> T =u.
The leader state is designated as xg, and communication matrices are
S(t) =[si;(1)] € RY", s =1, sio(t) € Ry, s0:=0.

Leader-follower linear cooperative control design (consensus law):
n
u; = siplzo — =i (t)] + Z 555 (8) [z (t) — @4 (2)].
j=1
Conclusions:
(a) No matter what s;;(t), the system is uniformly bounded.

(b) If the cumulative graph is strongly connected, consensus of zg is reached.

How about more general classes of systems?
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Dissipativity Theory

Heterogenous systems:
2 = Fi(zi,v), v = Hi(z),

where
vy = vs, (2:) + us.

Dissipativity (Willems): for p.s.d. storage function V; and a supply rate ®;(+),

t
Vi(zi) — Vi(z:(0)) < —/ B, (21, us)ds,
0
where, if ®;(-) is quadratic,

. 0
@i (zi,wi) = —ni(zi) +ul yi + ;lluill2 - éllyiH2~

Common forms of dissipativity:
@ Passivity: 7;() p.s.d., ¢, <0 and p; > 0.
@ Lo gain: n;(-) p.s.d., g; >0, and ¢; > 0.
@ Passivity shortage (PS):
Input PS (input-feedforward passive): n;(-) p.s.d., €, > 0, and p; > 0.
Output PS (output-feedback passive): n;(:) p.s.d., €; <0, and g; < 0.
PS: n;(+) p.sd., =1 < €;0; < 0.
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Passive Systems

Heterogenous systems:
2 = Fi(zi,vi), yi = Hi(z),

where z; € R"i, v;,y; € R™, OH(z;)/0z; has rank m, and

vy = vs,; (2i) + uj.

Passivity: for p.s.d. storage function V; and p.s.d. function 7;,

t t
Vi) — Vi(=:(0)) < — /0 i (z1)ds + /0 uTysds.

Im[G([=)]

Linear systems:
zi = Fizi + Gius, y; = Hizi,

@ positive real

Re[G(j)]

relative-degree-one

o
@ minimum-phase
@ Lyapunov function P;: GT P; = H;

Z. Qu TCAC Workshop @ 2020 ACC 16 / 41



Input Passivity-Short Systems

Heterogenous systems:
2 = Fi(zivs; (2i) twi), yi = Hi(z:).

Input passivity-short system: for p.s.d. storage function V;, p.s.d. function n; and constant
€ >0,

t t €: t
Vite) = VilesO) < = [ meds+ [ luds+ 5 [ ulPas

where ¢; is the so-called impact coefficient.
Y

\
N . (—¢€i/2) is the slope above;

‘' as € — oo, the whole plane is covered.

Im[G(w)]

il m

(a) Most Lyapunov stable systems
(b) All Lyapunov-stable linear systems can be
made PS under an output feedback control

Re[G(jor)]
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PS Systems with Self Output Feedback — an L, Gain

Heterogenous systems:
2 = Fi(zi,vs, (20) +wi), v = Hi(z:).

The ith system is said to be PS and have an La-gain g; if, for some g;,¢; > 0,

Vi(s) - Vi(ai <——/ s ds+/ Tyids + < /nuzn ds.

For linear system G(s), it follows that

A If o; — 0, we recover the input PS result.

Admissible area: Inside the cycle centered

at 1/g; and of radius /€;/0; + 1/02.

e[G(w)] For a large enough value of ¢, the circle will
contain Nyquist plot of any Hurwitz system.
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Physical Meanings of € and o

Consider the linear system

T
. _ . 0 1 |0 1
&= Az + Bu, y=Cuz, A*{,w% 72&0”}, Bi{l:|’ 07{0] .

It follows from Lyapunov function

V =27 Pa, P:{p1 pQ]A
P2 Pp3

that 0 .
V<-—Z¢yltu 7u2,
= 21/ + y+2

if and only if p1 > 0, p1p3 > P% and

~ —2wip2 +05¢  p1—26wnp2 —wpps p2 — 0.5
W= | p1—2fwnpz —wip3 2(p2 — 2€wnp3) p3 <0.
p2 — 0.5 p3 —0.5¢

Solutions of € and g using Lyapunov function from AT P 4+ PA = diag{—wn, —1/wn}I:
== ! (1 ! )2 +2 !
=w €= — - — _
e " W, W, (26w )2wn,
As £ becomes smaller, € increases.

Z. Qu TCAC Workshop @ 2020 ACC 19 / 41



Why PS Systems but not Passive Systems?

Some systems are passive:
First-order Hurwitz systems (e.g., 1/(s + a)) are passive.
Parallel connection of two passive systems is passive.
Negative loop connection of two passive systems is passive.

Most high-order systems are not passive even though they consist of passive elements:
Serial connection of two passive systems is generally not passive, e.g., 1/(s + 1)2.
Time delay is not passive
Discretization of passive systems is typically not passive, e.g., 1/s.

Passive short (PS) systems form a much broader of systems:

All Lyapunov stable linear systems are either PS or can be made PS under an output
feedback control

PS systems can be interconnected: parallel, series, negative feedback loop, positive
feedback loop, etc.

The passive short framework applies directly to discretized systems.

Z. Qu TCAC Workshop @ 2020 ACC
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Fundamental Property of Passivity-Short Syst

Consider a positive feedback connection of two PS systems.
Cooperative stability (consensus) is ensured if

System i

0< ky < 2/(6,' +E]‘),

Impact on networked operation is revealed.
Asymptotic stability could be further concluded
if the systems are zero-state observable.

Prvof: Consider
V=Vi+ V), ui =ky(y; —yi), and uj = ky(y; — y;). Then,

_ ; .
Vs 2 (Vi) = [ e+ o+ s
t
< V(0)— %[2 — (e + 6j)ky}ky/o s — vj|*ds.

Hence, we have
Zi;2j € Loo,  (¥i —yj) € L2, (yi —y;) = 0.

Other interconnections (e.g., negative feedback connection) work as well.
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Control of Uncoupled Heterogeneous Systems Using an

Information Graph

Communication graph: S(t) with S;; =1 and S;; € {0, 1}.
Network topology: Laplacian L(t), where D = diag{S1} and L = (D — S).
Heterogeneous systems:
Z = Fizi,vi), i = Hi(zi),
each of which is passivity short with impact coefficient ¢;.
Cooperative control protocol:
wi = ky; p (Y5 = ¥i)Sij-
J
Impact Equivalence Principle: As for fictitious systems y; = u;, consensus is ensured if the

graph has at least one global reachable node and k,, < Ey (which depends upon max€;).

If L is irreducible and fixed,

o Ao(TL + LTT)
Y™ 2(max; €;)Amaz (LTTL)

where va =0, I' is a diagonal matrix of entries in ;.

Advantages: networked systems, modularized design, plug-and-play operation.
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Example: Discrete-time 3-D Attitude Synchronization

Special Orthogonal group: SO(3) 2 {R € ®3%3|RRT =I5, det(R) = 1}.

Given inertial frame >~ , attitude of body i (body frame }_.) is denoted by exponential

coordinate eggwi, where &y, € R3 and 0w, € (—m + €, ™ — €) are the axis and angle of the
rotation matrix, respectively.

s0(3) 2 {5 € R373|ST = _5} is the Lie algebra of SO(3).

Operator “: 13 — 50(3) (whose inverse is denoted by ) is defined by

d:(a)”é |: 0 —as a2:|

TCAC Workshop @ 2020 ACC
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Discrete-time [ chronization

Angular velocity of body 4 with respect to >~ is

wb 2 (e_égwiéée“’i> .

w;

A precise discrete-time model of rigid body motion to preserve the SO(3) structure is
: : b
80w, (k+1) _ €0w, (k) oy, (F)

Passivity-short property:

co, (ki1 c6,, (k hat, 0\ 0u, () hat, ()2

B 0H0) = (e ) < (ke ) ) s 9) ok ) |2,

where

. . . . i b
(650 _ 6750)7 sk(eﬁe)' _ ésin@, Sk(eh“’z}i (k))' — g} W
i wh,,
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Discrete-time [ chronization Law

Control objective: X
lim ¢(es%(*)) =0,

k—oo

where

~ ~ o ~ 1 ~ 1 ~
e S oS0t g(e0) £ 2 lls — oS0 |[F = Ser(ls — e$0).

Discrete-time synchronization law (based on passivity shortage):
b . : .
sk(€"wi M) = ki 3 wijsk(eh€0is M)y,
JEN;

Stability condition:
sin e

k

P < .
"7 2h N max;en, Wij
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Simulation of Discrete-time 3-D Attitude Synchronization

20 rigid bodies with h = 0.02 sec, randomly generated initial conditions, ¢ = 7/10:

1 1r
<05 T 0Sket——
A — p——
5 0 = s 0
of o
W—O.SJ 3 -0.5
_ll _]I
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time [s] Time [s]
L.5
— 1
=
% 0.5
. o
<058
|
-1.5

1.
0 5 10 15 20 25 30 35
Time [s]
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Interconnected Heterogeneous S s

Interconnected heterogeneous systems:

& = Ai(xi)x; + Bi(zi)vy + Z Hij(yi,y5) (Y5 —vi)s  yi = Ci(wg)z;.
JEN;

Local control: V; = —Kl(x.b)xz =+ u;, which yields ZZ(I»L) = A,(xl) — Bz(xl)Kl(Z‘-b)

If
[ A (@) P; + P& (z) + piCF C; ]
- 3 (PH;;C; +cTul " Py) PiH;j(yiyj) P;B; — CF
JEN;
Mi(zi,y;) = : ; 0 ; 0 <0,
HE (i v;)Pi 0 —eigl 0 0
: 0 : 0
L BIpP, -, 0 0 0 —eii i
then 1
€i 2 i 2 2
Vi < uly b Sl = 2l + 5 Y eyl
JEN;
30 / 41
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Modular and Data-Driven Control Design

Network-level model:

pi 1
Vi <uf yﬁr*H P = Slwll® + = D eliysl>.
2 2
JEN;

Local design criterion:

min E Qi €4j

JEN;
subject to a;; > 0 and Mi(mi,yj) <0.

Networked control on an information graph:

i — —kcL ZS (y] - yl) = —K.Ly.

Cooperative control design criterion: Find k., such that

Q=TLT+ LT —LTK.WL+ ¥ >0,

where ¥ = diag{v;} with
Yo hey
Ci j=lin; iENj

i =

Advantages: networked systems, modularized design, plug-and-play operation, and data-driven,
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Destabilizing Attacks

A system under attack: )
y=—Lsy+ Lqd, d= Fad+ Bay

Consider the case L, = Ls and the injection model is a low-pass filter with F,, = —\,I and
By = I. Then y grows unbounded for all A\, € (0,1)

The overall system is

[ Z}: [ —2\51 7ILS } [ z } = det[s2] + (Ls + Aal)s + (Aa — 1)Ls] = 0

which is unstable for A\, < 1.

There are numerous choices of Fy, B, that leads to instability.

= need to make the system robust to any possible attacks.
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Example: A Two-Node Robust Cooperative System

Consider a network with two nodes interconnected with a hidden layer:
n] _[-1 1] [w (1 —1] [=1 d1
{92} N {1 *1} _yz} +8 -1 1] |22 *ldo
z#l_[-1 1] [=a 75'1 —1] [5n1
ol |1 —1 |72 _—1 1 Y2

g2 _ [— =B\ |n da
2= AJE B TE] 6]
cooperative system node 1 node 2
-« p d
‘\ -
N
-‘—‘-
hidden layer
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Intuitive Explanation of Competitive Interaction

node 1 node 2

Transfer function for node 1 from attack/disturbance d; to y; is given by

Y s+1

d  s2+42s+1+p2

The resonance frequency is 1 + 32. Hence, 3 1 yields resonance frequency 7.

Robustness design against attacks: 1) superiority of information access; 2) design virtual nodes
so they do not impact normal operation of the system; 3) automatic activation when attacks
appear anywhere in the system; 4) synthetic anchors to maintain system stability while state
estimation is in progress; 5) Mitigation measures embedded
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Topology Condition Hidden Layer Design

Networked system nodes y (Xs), virtual
nodes z (35, observation nodes (%,):

y=—Lsy+ BKz+ Lsd,

& &7 £=—Lyz — BGy,

d = Fud + Bay,

.v\ /1 A‘ > .,\ ,/1 A‘ where:
. s, @ B > 0: design parameter

Lemma: If d =0, y — 1L 2(0)/(v% 1) as t — co provided that:
I'yG=KTry, and vL K =0,

where I's = diag{vs1} and T'y, = diag{vn1}.
Note: G1 =0 = consensus value of z is not impacted by y

Sketch of proof: Lyapunov candidate V (y,2) = ¢y Tsy + 27T,z
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Robust Design of Cooperative Systems

System:
y=—Lsy+ BLsz+ Lsd,
2= —Lpz— BT, ' LTTy,
d = Fud + Bay,

Theorem: y € L, for all possible choices of F, and B, and, by increasing 3, y converges to an
arbitrarily small neighborhood

vIy(to)

vIy(to)
1/;[11

14+ T+ F71Bo +82M,) 7Y | (e1 + Be2)1 — F 1B, T
sl

g, v = !

)

where F;ILEFS = Ly My, and c1 and ca are some constants.

Sketch of proof: V = BT Tsj + B2TTh2 + dT Pod + 27T, d,

§=—Ls(§ — Bz — d),
= —Lp(Z+ BMn7),

E
d = F,d+ Bai.
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|dentification of Stealthy Attacks

When there is no attack
y = y(to)/(val), =z — lvyz(to)/ (v 1)
Under attacks, states y, z deviate from above values by 3¢, Z¢
Let A with dim(.A) = m < n be a set of nodes being attacked and
d® = (&° — B7°) — c11
which is not unique.
If m < [n/2], the set A can be found uniquely by solving ¢é; in
¢é1 = argmin, [[(2° — B2°) — c11]|;,

where [|y]|;, is the number of non-zero elements in vector y.

Note: vs1,vp1 can be estimated distributively.
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