
Control Engineering for High School Students and Teachers:

An Online Platform Development

Farhad Farokhi and Iman Shames

Contents

Report . 1
1 Introduction . 1
2 Courses . 1
3 Interviews . 2
4 Educational games . 3
5 Remote laboratory . 4
6 Conclusions and future work . 5
Appendix . 6
A Example course 1: Feedback theory . 6
B Example course 2: Models . 9
C Example course 3: On/off control . 12
D Remote laboratory (RLAB) manual . 13

1 Introduction

Based on our teen years and feedback from many of our colleagues and friends, we believe that
the control engineering, although being a major building block of automated system in many
processes and infrastructures, is a fairly alien subject to the students, parents, and teachers.
Therefore, there is a need for introducing feedback control and its application to high school
students and their teachers to recruit the next generation of engineers and scientists in this
field. We also believe that the academic community has a responsibility to disseminate the
information cheaply, if not freely, to a wide range of interested audience, be it students, parents,
or teachers, across the globe. This way, we can guarantee that people from different socio-
economic backgrounds and in different countries can make informed decisions regarding their
careers and those of their friends and families.

Motivated by these needs, in this project, we have attempted at developing an online platform
for the students and their educators to read about the control engineering, watch lectures by
researchers from academia and industry, access interviews with successful people in the control
engineering community, and play online games to test their understanding and to possibly learn
about the applications of the automatic control. The platform also contains a remote laboratory
for the students to see control engineering in practice.

Figure 1 shows the landing page of the online platform. This page leads the students (or any
other users) to various parts of the platform containing the relevant information, such as short
courses on control engineering, online games, interviews, remote laboratory, and a news blog.
In the rest of this report, these elements are discussed.

2 Courses

A fundamental part of a successful platform for the students to learn the basics of the control
engineering, albeit in a simplified form. The covered concepts could contain introduction to

1

Figure 1: The landing page of the online platform.

feedback control, history of control engineering, modelling, sensors, actuators, on/off control,
stability, performance, proportional control, etc. Figure 2 illustrates the menu from which the
users can select the appropriate course.

An important issue when developing the courses is to keep the discussion at an appropriate
level for senior high school students and undergraduate students. This way the material can
engage the most number of people. Further, the material can excite younger students that are
slightly ahead of their cohort. Each course is structured as in Figure 3. That is, it starts with
an introduction on the topic. There are also videos, gathered from open sources, that discuss
that topic. Then, the material is presented and examples, numerical or physical, follow that.

It should be noted that the undergraduate level of material does not mean that all math-
ematics should be avoided; however, the level of the mathematics should be tailored to the
audience. In the platform, it is decided that the level of the mathematics is kept at high school
and/or undergraduate calculus. Examples of the content of the platform and the level of the
mathematics for first three courses of the platform are given in Appendices A–C.

Finally, graphical interfaces are utilized to help with the understanding of the concept. For
instance, in the course discussing on/off controllers and their application, a simple graphical
interface is used to show the effect of hysteresis or the band in the performance of the on/off
controller. See Figure 8 in Appendix C.

3 Interviews

Another important part of this platform is to introduce the biggest names in the control en-
gineering community, both in academia and industry, to the young students. This way, the

2

Figure 2: The list of courses offered on the online platform.

Figure 3: An example of course on the platform.

students can see the potential trajectory for their success in the future. Currently, the platform
only features links to the IEEE Control System Society (CSS) interviews with the researchers
in the field of control engineering. However, in the future the interviews will also be populated
with many early-career researchers and engineers. The webpage also encourages the students to
interview the control engineers in their vicinity. Figure 4 illustrates the interview panel of the
online platform.

4 Educational games

In the online platform, the use of educational games is also highly encouraged to help with
improving the understanding of the students. Understanding the effect of the delay in the
closed-loop system is a subject for which a game is developed. In this game, the objective of
the user is to control the distance of a satellite from the earth. The satellite is effected by the
gravitational forces as well as space objects that might hit it (i.e., disturbances). In this game,
the level of the difficulty is a function of the delay between sending a command by the user and
observing its effect on the satellite’s movements. As expected, the users have a difficult task at
hand as the delay grows. Figure 5 illustrates the starting page of the game.

3

Figure 4: Interview panel of the online platform.

5 Remote laboratory

Remote laboratory (RLAB)1 is a software package designed to aid development of remote-access
laboratory experiments by providing a web interface to laboratory apparatus that manages the
access, queuing and data-retrieval for experiments. In what follows, an overview of the design
of RLAB is presented. Instructions on how to install and develop such laboratory experiments
is provided in Appendix D.

The term apparatus is used to refer to a physical equipment on which an experiment is
run. The term experiment is a particular procedure that can be performed on an apparatus.
Note, each apparatus could perform any number of experiments. It is assumed that every
remote-access experiment is designed such that it can be initialized, controlled, and measured
via a digital computer. Here, we presume that a Raspberry Pi (RASPI) is the digital computer
interface used by all apparatus, however, the RLAB software could be modified to be run on
any digital computer. The apparatus that is going to be deployed in this remote laboratory is
presented in Figure 6.

As shown in Figure 7, the RLAB software runs on Raspberry Pis that are co-located with a
particular lab apparatus. The RLAB software serves webpages to allow users and administrators
perform certain tasks as described in the following subsections.

Queuing experiments

The webpage /queue_expr/<expr_id>/ provides a form that shows all the parameters that can
be modified when performing the experiment named <expr_id>. By submitting this form, the
user’s particular experiment setup is placed into a queue. In the background the RLAB software
then queues each experiment sequentially and sends a notification email on completion to the
user. This email contains a link which instructs the user where to download the results, which
includes the experiment setup, results, score and a video.

Retrieve experiment results

Once an experiment has completed, the RLAB software serves the files at the web address
/downloads/<filename>/, a link to this location is provided in the experiment complete no-
tification email. By default the expiry time for this file is 24 hours, however, this time can be
modified by the admin.

1This part is developed by Mark M. Fabbro, a casual engineer at the Department of Electrical and Electronic
Engineering at the University of Melbourne, hired with the outreach grant provided by the IEEE CSS.

4

Figure 5: An educational game for demonstrating the effect of the delay in control of systems.

Compare results via scoreboard

Some experiments have a suitable notion of a score. When this is the case the RLAB software
serves a web page located at /topscores/<expr_id> that provides that top 5 scores and an
average score for the experiment. This feature is used to make the remote laboratory competitive
and more interesting to the users.

Administrative tools

The RLAB software provides a web page /admin_tools/ which allows the administrator to
(i) enable/disable experiments, (ii) restrict experiment access and, (iii) reset the scoreboard.
The enable/disable experiments feature allows the administrator to stop users from queuing a
particular experiment on an apparatus. This is useful in the context of university workshops,
where certain experiments can be made available only after a certain date in semester. Moreover,
if an experiment fails the RLAB software immediately disables the experiment and notifies the
administrator via email. The restrict experiment access feature allows the admin to submit a
CSV list of all user names that have permission to submit a particular experiment. This feature
was included for the case where lab equipment is sensitive and should only be used by researchers
or specific students.

6 Conclusions and future work

Unfortunately, the project’s implementation has been delayed due to multiple reasons including
technical difficulties (regarding hosting the online remote laboratory platform and cyber-security
issues regarding the use of the university’s network). In addition, due to the initial delay in
review of the grant, the preliminary plans of the investigators were changed and further delayed.
Furthermore, since the webpage of the online platform is being developed internally, lack of
access to proper rights for the use of pictures and videos has also stalled the completion of the
web front. Hence, at the current time, the project is still not finished and is ongoing. However,
recently, the progress has been steady. It is anticipated that the project finishes within 6-9
months.

An important step is to finish the web front for the online platform. This allows us to
make the webpage live. Further, a physical apparatus needs to be integrated into the remote
laboratory so that the users can implement various control strategies on the robot for assessing

5

Figure 6: A Lego segway is used as an apparatus in the remote laboratory.

their knowledge of the subject. Experiments need to be designed for this part that are in the
range of the knowledge of the students.

A Example course 1: Feedback theory

Feedback Theory

Control engineering is a versatile theory that helps us design and build intelligent systems
ranging from electric toothbrushes to space stations. You have perhaps used ideas from control
engineering in your day-to-day life but might have not noticed or didn’t know the theory behind
it. For instance, every time you take a shower, you are using basic control theory to find the
right temperature. You open the tap, get feedback by checking to see if the water is cold or hot,
and change the ratio of the cold and hot water to get to the perfect temperature. This is the
very essence of the control theory. Of course, the techniques get much more complex when they
are applied to bigger or more expensive systems (there is no room for a mistake there) but the
basics are the same. First of all, we use a sensor to constantly monitor the environment and the
underlying system (to see if we have achieved our objective or not). In the shower example, your
hands are the sensors. They are not very precise but, nonetheless, they act as sensors. They
give you a crude feedback of the system (ouch that’s too hot or uhhh that’s too cold). If you
want better sensors, you can take a thermometer with yourself. Then, the controller uses these
measurements to adjust the references to the system to achieve our objectives. Again, in the
shower example, you and your brain are the controller, the input or the reference is the ratio of
the cold and hot water, and the objective is to get a comfortable water temperature.

The idea seems simple (believe me when I say there are many intricacies) but you can use
it in many systems to get what you want. These ideas are used on a day-to-day basis in many
advanced fields, such as space exploration, finance, healthcare, and robotics. Within the pages
of this website, we try to learn about these ideas and their applications to our daily life and
advanced systems. So sit tight and get ready to learn about control engineering.

Control engineering is a versatile theory that helps us design and build intelligent
systems ranging from electric toothbrushes to space stations.

6

Figure 7: Remote laboratory software architecture.

Open loop versus closed loop

The terms open loop and closed loop are technical terms (jargon) that are used on by control
engineers. Open loop simply means that we do not use measurements from the sensors to adjust
the inputs of the systems. In these systems, we typically sit down and exactly calculate “how
much” input is enough to get to where we want and then provide that input to the system.
To give you a visualization, open loop control is like driving without looking. That metaphor
probably gives you the sense that open loop control is dangerous, which is a good intuition!
Open loop control works if the environment is not changing a lot (for instance when you are
driving on a completely empty straight highway) and you know the system very good (you
are using a car that you have driven for the past several years). But, in practice, there are
always uncertainties: wind, tire pressure imbalances, etc. In that case, we would like to close
the feedback loop by constantly monitoring the sensors and adjusting the inputs or references.
This methodology is, perhaps unsurprisingly, called closed loop control. In the driving example,
if you keep your eyes open, you are constantly using your sensors, your eyes, to measure your
distance with pedestrians and other vehicles and adjust your input (accelerating or braking).

... in practice there are always uncertainties ... [therefore we should] close the
feedback loop by constantly monitoring the sensors and adjusting the inputs ...

Figure above shows a schematic diagram of the closed-loop control. System is what we would
like to control like the car. Sometimes, people call them plants (as in power plants, not trees).
Sensors are the elements that measure various variables in the environment and the system.
They tell us what is happing in reality. In the driving example, our eyes are acting as sensors.
Some advanced cars have proximity sensors to alert us if you are getting too close to an obstacle
when driving in reverse. Those are also sensors. The controller is the element we are using to
convert the data from the sensors to the adjustments of the inputs to manipulate the behaviour
of the system towards what we want. So far, in all the examples that we discussed, you and your
brain have acted as a controller but the controller can be a computer, an especially designed

7

chip, or even a piece of metal. We will see examples of all these controllers in what follows.
Then, the command from the controller is passed to an actuator. Actuator is a device that
acts on the system. In the driving example, our feet and hands are actuators. They change the
inputs to the system. Actuators can be motors, valves, or other objects. We will see examples
of the actuators in the future too. Sometimes the actuator and the controller are packed in a
single box as the controller.

Effect of uncertainty

In fact, feedback loop was popularized, in part, due to the work of Hendrik Wade Bode while
working with amplifiers at Bell Labs. Amplifiers, if we model them at a very basic level, are
static gains. You will feed them a signal (like your voice in a microphone) and they increase
its amplitude to a level that can be transmitted over wires and then fed to a speakers. The
problem that Bode was facing was that the gains of these amplifiers was highly variable due
to their design process and the environmental factors (such as temperature) among many other
factors. The gain could change significantly and that would make their products unusable (a
volume of the voice on your phone could have deafen you one day while being fine another day).
So what he did was to use feedback. Consider the elementary feedback loop in the figure below.
This feedback loop is a bit different from the one that we discussed eariler but it has the same
structure.

First, the system here is the amplifier. The system multiplies everything that it receives,
in this case e, with the gain K. Here, for simplicity, we have dropped the actuators and the
sensors. The controller is contained inside the dashed lines. The controller gets the output y,
multiplies it with the gain C, and then compares that with the input u to construct the error
e := u− Cy. Substituting e = u− Cy inside y = Ke, we get

y = K(u− Cy).

Now, if we solve this equation for y, we get

y =
K

1 + KC
u.

8

So, the gain of the closed-loop system is T := K/(1 + KC). Let’s have a numerical example.
Let say K = 100 and C = 0.1. The gain of the closed-loop system, based on our calculation, is

T =
100

1 + (100)(0.1)
≈ 9.091.

Now, let’s say something happens and the gain of the amplifier significantly changes to K = 1000.
So, if we were using this amplifier, our ears would suddenly ring. In this case, the gain of the
closed-loop system becomes

T =
1000

1 + (1000)(0.1)
≈ 9.901.

That significant change does not change the gain of the system with a feedback loop noticeably.
In fact, for all large K, we have that

T ≈ 1

C
,

which is independent of K. That was great news for Bode because the feedback gain C for
his amplifiers were designed using resistors and they were very accurate. We can define the
sensitivity S as the changes in the gain of the closed-loop system T over the changes the gain
of the amplifier K. We get

S =
9.901 − 9.091

1000 − 100
= 0.0009 = 0.09%.

If there was no feedback the sensitivity was 100% (meaning the changes in the gain were com-
pletely observable in the output) but now the sensitivity is less than a tenth of the percentage
point! These calculations were done for a very simple system but the observations can be
generalized to many more complex systems.

B Example course 2: Models

Introduction

Models are mathematical objects that we develop to be able to replicate the behaviour of the
system in a computer (called simulation) or to understand the behaviour of the system (like
what variable excites what part of the system). We can develop these models by laws of physics
(first principle models) or we can try to fit a model to a system. For instance, if you have a
robot that moves freely in the space, we can model it using Newton’s laws of motion. Let’s say
we have a robot that can only move left and right and its position is given by x. Doing so, we
get

ẍ(t) =
1

m
F (t),

where F (t) is the force applied to the robot by its motor (so, technically, the input the system)
and m is its mass. If we wanted to digg deeper and model the wind friction, we would get

ẍ(t) =
1

m
[F (t) − bẋ(t)].

That is because the force excreted by the wind friction is proportional to the velocity (which is
the derivative of the position) ẋ. These models are called continuous time models (because we
look at the object continuously in time). But let us consider a different case, where we look at
our robot only once per second. This way, we get

x[k + 1] = x[k] + (F [k]/m)∆t,

where x[k] denotes the positions of the robot in the k-th second and ∆t is the time between two
consecutive updates, which is 1 sec in this example (but can be different in other cases). The

9

expression above is correct, of course, if the force F is constant between two updates. It is good
approximation even if F is slowly varying (certainly slow considering the sampling time ∆T).
This is called a discrete-time model. Sometimes, it is easier to work with the discrete-time model
and, sometimes, it is easier to work with the continuous-time model. There are cases that you
have to work with a discrete-time model. For instance, inside a computer, since computations
are done in sequence and time is discreteized, discrete-time models should be used.

What does the model tell us?

Let us consider a very simple model and study its properties. Since dealing with continuous-
time models is more difficult with a limited mathematics knowledge, we consider a discrete-time
model. Consider a single room and a air-conditioning (AC) unit in

T [k + 1] = T [k] − 1

RiCi
(T [k] − To + u[k])∆t,

where T [k] is the temperature of the room at k-th time instant, To is the ambient (outside of
the house, the other rooms, etc.) temperature at that instant, u[k] is the effect of the AC unit,
Ri is the thermal resistance (oC/kW–read this as Centigrade degree per kilo Watt) of the room,
and Ci is the thermal capacitance (kWh/oC–read this as kilo Watt hour per Centigrade degree).
The last two, Ri and Ci, are constants that relate to the size of the room, the material that is
used to build and insulate the walls, and the furnitures inside the room. The same as before,
∆t is the time between two consecutive updates. Let define a parameter a := ∆t/RiCi ≤ 0 to
make the model easier to write down. We get

T [k + 1] = (1 − a)T [k] + aTo − au[k].

This model allows us to simulate the behaviour of the room as a response to the AC’s input
u[k]. We can write a code in the computer to simulate this behaviour. The model however give
us other insights about the system without the need for simulation.

Assume that the AC is off. That is, u[k] = 0. The model becomes

T [k + 1] = (1 − a)T [k] + aTo.

An interesting point is an equilibrium. An equilibrium of the system T is a point that if we
initialize the system there T [0] = T , it says there for ever T [k] = T for all k ≥ 0. Alternatively,
we can say that T is an equilibrium if T [k] = T implies that T [k+1] = T . What’s the equilibrium
of the simple system above? By the definition, if T is an equilibrium, we get

T = (1 − a)T + aTo.

If we solve this equation for T , we get that T = To. This shouldn’t be surprising to you.
This means that if the temperature of your room is the same as the outside temperature, the
temperature of your room stays the same as the outside temperature for ever. Let us try to
understand more about the dynamics of the room temperature. With a little bit of mathematics,
we can see that

T [1] = (1 − a)T [0] + aTo

T [2] = (1 − a)T [1] + aTo

= (1 − a)((1 − a)T [0] + aTo) + aTo

= (1 − a)2T [0] + ((1 − a)a + a)To

T [3] = (1 − a)T [2] + aTo

= (1 − a)((1 − a)2T [0] + ((1 − a)a + a)To) + aTo

= (1 − a)3T [0] + ((1 − a)2a + (1 − a)a + a)To.

10

If we follow all the calculations up to the k-th time instant, we can write T [k] as a function of
the initial condition T [0] and the ambient temperature T0:

T [k] = (1 − a)kT [0] + ((1 − a)k−1 + · · · + (1 − a)2 + (1 − a) + 1)aTo.

Using the properties of the geometric sequences, we get

(1 − a)k−1 + · · · + (1 − a)2 + (1 − a) + 1 =
1 − (1 − a)k

1 − (1 − a)
=

1 − (1 − a)k

a
.

Therefore, we have

T [k] = (1 − a)kT [0] +
1 − (1 − a)k

a
aTo

T [k] = (1 − a)kT [0] + (1 − (1 − a)k)To.

If we selected ∆t small enough so that our model is realistic, 0 < 1 − a < 0, which means that

lim
k→∞

(1 − a)k = 0,

and, as a result,

lim
k→∞

T [k] = lim
k→∞

(1 − a)kT [0] + (1 − lim
k→∞

(1 − a)k)To

= To.

Again, not surprisingly, this means that no matter what is room temperature now, as time goes
by the temperature of the room converges to the ambient temperature. This is something that
we see everyday. If it is a hot day outside, when we turn off the AC, the room gets warmer until
its temperature becomes the same as the outside. These observations are however extremely
valuable if we model a very complex system. The model can also be used to design a controller
and to evaluate how good our controller is.

Modelling uncertainty

When we model a system, there are many phenomena that we might no consider. This could
be because we do not know about them or because if we consider them the model becomes so
complex that no one really can use it. For instance, in our model for the temperature of the
room, we can go extremely detailed and consider the fact that the temperature of the air at
different locations in the room is different. When we pump warm air into the room, we need to
wait until diffusion (a fancy name describing the fact that the warm air moves and mixes with
the cooler air) does its magic and the temperature of the whole room increases. We also do not
consider the effect of the furniture in the room. They absorb energy and their temperature rises.
People also change the model. On top of all these neglected effects, we might not be completely
sure about some of the parameters in the model. We can perform experiments to measure these
parameters but, at the end of the day, we might only have access to noisy versions of these
parameters.

All these simplifications and randomness creates a model uncertainty, that is, our model
might not completely reflect the behaviour of the room. For instance, using our model, we
might expect that the temperature of the room reaches a certain value after half an hour but
in practice if we turn on the air conditioner we might need to wait a few more minutes. This
however doesn’t matter that much if we are using a feedback loop to regulate the temperature
of the room. As we discussed (and to some extent saw) in the lesson about feedback theory
closing the control loop makes the system much more robust to the changes of the parameters
and uncertainties.

11

C Example course 3: On/off control

On/Off Controller

This is the easiest controllers that one can employ. It is also one of the most used controllers.
This control scheme is used when inputs to the system can only take two values: being on or off.
For instance, let’s say our control problem is to regulate the temperature of our house. In our
house, we only have an old fashioned air conditioning unit, where we can’t set a temperature
reference. So our input to the system is either to turn the air conditioning system on or to turn
it off completely. How can we regulate the temperature of the house around our desired point,
say 20 degree Celsius? You know the answer perhaps but let me right it. You would turn the air
conditioning unit on until the temperature of the house is close to your desired value. Then, you
would turn it off. You repeat the procedure again as the temperature gets above your desired
point. As you would guess, if you do this, you would have to turn the air conditioning unit on
and off quiet rapidly. So, you cool down the room to a temperature slightly below your desired
point and would turn the unit on again after the room temperature has passed a slightly higher
temperature than your desired point. This way, the room temperature is never at the desired
point but it is always in a band around it. The narrower the band, the more frequently you
need to switch between on and off positions. This is a very simple and effective mechanism for
control but it has a couple of cons. First, it cause wear and tear on the actuators (turning your
air conditioning on and off all the time in rapid successions can make it break faster). Second,
the error in achieving what you want can be too high. Yes, it is fine to have this controller for
regulating the temperature inside a house (a couple of degrees above and below are not even
noticeable by us) but these levels of error are not justifiable in regulating the temperature inside
a clean room in a chip manufacturing factory.

Figure 8: Example of a simple on-off controller for a temperature control setup. It is easy to see the trade-off
between the performance and the distance between two consecutive change of command from on to off and vice
versa.

There are also other important issue that we need to consider when using an on/off controller.
In the temperature control, turning the actuator, the air conditioning unit, on and off would
directly influence the temperature, the variable that we want to control. That’s a good thing;
it makes the implementation of the controller easy. However, in my real systems, the changes
in the actuation influence another variable (or many variables in sequence) and those variables
end up influencing the variable that we want to control. In those cases, we have to me more
careful in selecting the band. This is because after we turn the system off, the system might be
influenced by the secondary variable for a while until that effect fades.

12

D Remote laboratory (RLAB) manual

Installing, configuring and deploying RLAB

This section documents how to install, configure and deploy the RLAB software using RasPi 2,
and the RasPi camera. The installation guide is for unix/linux/macosx users, but can also be
performed on windows via the PuTTY SSH client.

Installing RLAB

Connect the Raspi to your local network using a wired LAN connection. From your router, or
alternative method, locate the ip address for the Raspi, then from any computer on the same
network, open up a terminal and type the following:

>> ssh pi@<rpi_ip_address>

% A prompt for password will pop up, type ‘raspberry’

>> sudo apt-get update

>> sudo apt-get upgrade

>> sudo apt-get install unzip

>> sudo apt-get install screen

>> sudo pip install virtualenv

>> cd ~

>> wget -O rlab.zip http://<<rlab_download_location>>

>> unzip rlab.zip -d ~/rlab

>> virtualenv flaskenv

>> cd flaskenv

>> source ./bin/activate

>> pip install -r ~/rlab/requirements.txt

>> mv ~/rlab/code/ ~/flaskenv/code/

Configuration RLAB

Next, edit the configuration file located at

/home/pi/flaskenv/code/conf/application.yaml

An example configuration file:

admin:

user: adminusername

pass: adminpassword

eaddr: scopelabmelb@gmail.com

epass: emailpassword

smtp_server: smtp.gmail.com

smtp_port: 587

web:

external_addr: 120.160.80.10

expr_data:

13

path: ./expr_data/

expiry_age_in_hrs: 12

apparatus_name: Test Apparatus

experiments:

one:

pars:

- par1

- par2

two:

pars:

- par1

- par2

- par3

A specific description of the keys is now given.

admin:user Username for the admin. user that has access to admin_tools page.

admin:pass The password for the admin user.

admin:eaddr The email address that notification emails will be sent from.

admin:epass The password associated with this email address. Needed to send emails from
the smtp server.

admin:smtp server Location of SMTP server for this email.

admin:smtp port The port for the SMTP server for this email.

web:external addr The IP or domain name of this raspberry pi for devices outside of the
LAN. Note, that a sysadmin will need to port forward port 80 HTTP from this external
IP address to port 5000 of local LAN address of the raspberry pi.

expr data:expiry age in hrs The length of time a file sits on the server before it is deleted.
This needs to be short since raspberry pis do not have very large storage.

apparatus name the name of this apparatus, will be used on web pages for identification.

Finally, the last item experiments is the most import. In the example above, the configuration
file says that this apparatus currently serves two experiments named one and two. The one

experiment requires two parameters from the user, named par1 and par2, and the experiment
named two requires three parameters named par1, par2, and par3. Obviously these are just
generic names for generic experiments. However, when naming experiments and parameters use
one word names without spaces.

Starting RLAB Webserver on raspberry reboot

If the user would like the web server to be started at the boot-up of the raspberry pi, execute
the following.

>> chmod +x /home/pi/flaskenv/code/boot_server.sh

>> sudo crontab -e

% Select NANO editor

14

Then insert the following line at the bottom of the file.

@reboot /home/pi/flaskenv/code/boot_server.sh

Creating experiments

Finally, in this section we address how experiments are created using the RLAB framework. The
steps are as follows: (i) Add experiment to the configuration file, as shown in Subsection D, (ii)
Add a HTML template that gathers the parameters for your experiment, (iii) Write the python
method that performs the experiment.

Note, for the remainder of this section suppose we wish to design an experiment named
trackingrobot that takes two numerical parameters: p1 and p2.

Add experiment to Config

As shown in a previous subsection, open the file /home/pi/flaskenv/code/conf/application.yaml
and insert:

experiments:

one:

pars:

- par1

- par2

two:

pars:

- par1

- par2

- par3

trackingrobot:

pars:

- p1

- p2

This configuration allows three experiments to be queued, one, two, and now trackingrobot.

Gathering user data via experiment template

Next, create a new HTML template file called expr_trackingrobot_form.html under the di-
rectory

~/flaskenv/code/templates/expr/

Note, the name of this file is important, it must be of the form

expr_ + experiment_name_as_in_config_file + _form.html

Remark: This is why it is important to only use single word names for parameters and
experiments in the config file as they will be used for file names.

Next, construct the HTML form using this template as an example. If the parameters are
not of number-type, then select any valid HTML input type.

15

<html>

<head>

<title>Queue Experiment</title>

<link rel=stylesheet type=text/css href="{{ url_for(’static’,

filename=’style.css’) }}">

</head>

<body>

<div id="container">

<div class="title">

<h1>Queue Experiment: Tracking Robot</h1>

</div>

<div id="content">

<form method="post" action="{{ url_for(’expr_submit’,

expr_id=’trackingrobot’) }}">

<label for="user">Please enter your name:</label>

<input type="text" name="user" />

<label for="email">Please enter your email:</label>

<input type="email" name="email" />

<label for="p1">Parameter 1:</label>

<input type="number" name="par1" />

<label for="p2">Parameter 2:</label>

<input type="number" name="par2" />

<input type="submit" />

</form>

</div>

</div>

Index

</body>

</html>

Remark: It is critical that the

action="{{ url_for(’expr_submit’, expr_id=’trackingrobot’) }}

line is modified to include the experiment name, and that each parameter specified in the
application.yaml configuration file is collected in the form with the same names.

Write Python method that performs experiment

The final and most difficult step is to write the python code that performs the experiment given
the parameters from the user. This code needs to be written in the file ~/flaskenv/code/experiment.py,
and needs to take the form of the following skeleton code.

import os, time

from picamera import PiCamera

#

#

def run_experiment(expr_id, pars, wdir):

Add a line here for each experiment on this apparatus

if expr_id == ’one’:

16

return run_experiment_one(pars, wdir)

elif expr_id == ’two’:

return run_experiment_two(pars, wdir)

elif expr_id == ’trackingrobot’

return run_experiment_trackignrobot(pars, wdir)

def run_experiment_trackingrobot(pars, wdir):

Parameters stored in pars dictionary, with keys

as specified in config file. ie.

pone = pars[’p1’]

ptwo = pars[’p2’]

Perform Initialization Procedure for

trackingrobot here. If the initialization fails,

call the following exception:

raise ’Expr. Init. Failure’

After Initialization if no problems Perform Experiment

Start Video

with PiCamera() as camera:

camera.resolution = (640, 480)

fname = os.path.join(wdir, ’vid.h264’)

camera.start_recording(fname)

Perform Work in Here, if any issue occurs call the

following exception:

raise ’Expr. Runtime Failure’

When experiment is finished: stop video

camera.stop_recording()

Save experiment results to wdir directory. Call the files

anything except ’score.txt’ ’setup.txt’ ’vid.h264’

results = []

with open(os.path.join(wdir, ’results.csv’) as f:

f.write(results)

If the experiment can have a score, calculate score here, otherwise

return 0

score = 0

return score

Handle experiment ’one’

#def run_experiment_one(pars, wdir):

Handle experiment ’two’

#def run_experiment_two(pars, wdir):

After everything above has been completed, the trackingrobot experiment can be queued
remotely using the RLAB interface by hitting the webpage /expr_queue/trackingrobot/.

17

