
Verification of Control System Software

Control systems are typically prototyped with 

graphical design tools such as Simulink; the 

actual implementation is then obtained by 

either compilation from these tools or via other 

high-level languages such as Scade. All of these 

steps, including early design, may result in bugs 

slipping into the end product. These bugs may 

lead to costly product recalls or, in the case 

of safety-critical systems (aircraft fly-by-wire, 

medical infusion pumps, safety-critical industrial 

processes, etc.), to loss of life and limb.

The traditional way to detect bugs in a 

computer system is through testing: run the 

programs or components thereof on sample 

inputs and check for violations of expected 

system behaviors—not just program crashes, 

but also functional properties such as actuator 

constraint violations and inconsistent mode 

settings. Although coverage criteria for testing 

typically guarantee that all instructions of the 

program have been exercised, testing cannot 

exercise all possible configuration executions 

on all possible inputs.

The limitations of testing could be overcome 

if we could prove that a program behaves 

correctly on all possible inputs. This is the goal 

of formal validation and verification research, 

which has resulted in practical tools and 

successes in this area!
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The Airbus A380 has 

advanced fly-by-wire 

controls implemented  

in software. A380  

software development 

benefited from static 

program analysis tools.

From Testing to Proving

Correctness proofs for programs were proposed in the late 1960s by Floyd and Hoare,  

but the limited technologies available for automating such proofs long confined them  

to academic examples and idealized versions of crucial algorithms. 

A crucial limitation of automated program analysis is that no analysis algorithm can 

be guaranteed to never give false negatives (failing to point to bugs) or false positives 

(bugs that cannot occur in reality). This is a basic mathematical result of computability 

theory. Thus, all automated analysis methods effect a balance between these two kinds 

of errors/imprecisions.  

Within these theoretical limits, though, practical tools can and have been developed 

and deployed.

From Academia to Industry

The aerospace community’s interest in formal methods was renewed in 1996 by the explosion 

of the maiden flight of the Ariane 5 rocket due to a software bug (an arithmetic overflow).  

A team of researchers from INRIA was commissioned to design a static analysis system that 

could detect such kinds of bugs in future. The academic IABC static analyzer was later turned 

into the PolySpace verifier. (PolySpace, a startup, was later bought by The MathWorks.)

The Airbus A380 was the next major application of static analysis in aerospace. 

Researchers from École Normale Supérieure of Paris and CNRS developed new analysis 

techniques for avionics software (e.g., analyzing floating-point computations such 

as digital filters). The Astrée tool is now marketed through AbsInt GmbH, which also 

develops the aiT tool for proving bounds on worst-case execution time on modern 

embedded processors (with pipelined execution units, caches, etc.).

In the United States, the U.S. Food and Drug Administration (FDA) began an initiative 

in 2010 enforcing the use of static analyzers for programs running infusion pumps; the 

misbehavior of such programs may result in the death of patients.

Success Stories  
FOR CONTROL
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For more information on the Astrée tool, visit http://www.astree.ens.fr and http://www.absint.com/astree/.  
Also see the companion flyer on “Toward Verifiably Correct Control Implementations” in the Research Challenges section of this volume.

The Astrée Static Analyzer 

The Astrée static analyzer takes as input C source code and optional 

annotations (e.g., range of inputs). After a fully automated analysis, 

it provides easy-to-understand “traffic-light” indications: a green 

light for program instructions for which it can prove that no unsafe 

behavior may occur, a red light for those that it can prove will 

necessarily result in unsafe behavior if executed, and an orange 

light for those for which it cannot provide proofs of either safe or 

unsafe performance.  

Some static analysis tools may exhibit false negatives: they may 

fail to flag possible runtime errors or specification violations. 

In contrast, Astrée is sound. It performs an exhaustive scan 

of the control and data space of the program, according to 

the user-specified inputs and the semantics of the C language 

(including fine points such as floating-point computations, 

modular integers, pointer manipulations, and memory layouts). 

It thus discovers all runtime errors. Such soundness of results 

is often considered to necessarily lead to many false positives 

(warnings about nonexistent problems), but this is not the case 

with Astrée when applied to its intended target: safety-critical 

reactive control code with neither dynamic memory allocation, 

recursion, nor concurrency. By concentrating on the discovery 

of runtime errors in such programs, Astrée solves a simpler 

problem than general-purpose analysis tools, but solves it well.

Astrée is specialized. It is parametrized by a set of abstractions that 

have been specially tuned for use on embedded control-command 

software, with a preference for avionic and space software. It 

includes very specific, mathematically sound analyses for constructs 

commonly found in such applications (e.g., infinite-impulse-response 

digital filters or quaternion computations) but not in general-purpose 

software. Designed to be efficient and precise (few or no false alarms) 

on these codes, it has also been shown to perform well in other 

application domains of embedded C software.

Astrée has been successfully applied to the analysis of large 

industrial codes. In just a few hours, it was able to prove 

automatically the total absence of runtime error in codes of over 

1 million lines. For instance, it analyzed Airbus A380 fly-by-wire 

control code in 14 hours with no false positives.

The Ariane 5 rocket had to be destroyed on its 

maiden flight because of a software bug  (an 

arithmetic overflow). This incident renewed 

interest in formal verification and ultimately 

resulted in a success story for the technology.

The graphical user interface of the Astrée tool displays program lines that could cause runtime errors 

and also outputs useful information on the program, such as the range and usage of variables.


