
Financial engineering is about risk 

assessment and risk management. At the 

individual and institutional levels, the key 

objective is to maximize the expected 

return on one’s investment portfolio while 

staying within the limits of acceptable risk.

Completely eliminating risk is impossible; 

for example, a bank settles for bounding 

risk at a 99% (or some other preselected) 

level, ensuring that the reserves on hand 

are sufficient to meet all contingencies 

with a probability of 0.99. These probability 

computations are based on historical 

observations—and therein lies the problem.

Crises are caused not by run-of-the-mill 

events, but by “extreme events”—sometimes 

by a confluence of extreme events referred 

to as a “perfect storm.” So an important 

part of financial engineering is estimating 

“tail probabilities,” that is, probabilities of 

very rare events. It is safe to say that most 

existing methods for fitting probability 

distributions to observed data are poorly 

suited for estimating tail probabilities. This is 

the challenge that provides an opportunity 

for control scientists and engineers.

Estimating Heavy-Tailed Distributions in Finance

Estimating VaR

The complementary distribution function (.) is often estimated using historical records.  

This approach poses two difficulties:

• An inadequate number of observations, and

• Improper modeling assumptions.

When historical records are used to estimate (.), often a standard distribution function 

(such as Gaussian, Laplacian, or Pareto) is fitted to observations. Although these may 

give a good approximation, the key is to obtain a good fit for the “tail” of the distribution 

because that is where it is most crucial to estimate the risk correctly.

With daily closing records stretching over one year, only 250 data points exist for each 

random variable; so only 12.5 data points are available to estimate  -1 (0.05), and a 

mere 2.5 data points are available to estimate -1 (0.01). Going back over periods longer 

than one year is risky as the process statistics are nonstationary and will have changed. 

Enlarging the number of samples by pooling data from multiple sources, such as prices 

of multiple stocks or multiple commodities, is also dangerous if these measurements are 

highly correlated; the apparent multiplicity of samples is then illusory.

	  

	  

	  

Illustration of the value at risk concept. The plot on the left shows the complementary probability 

distribution of the potential loss and the VaR at the 0.01 (1%) level—the loss will be ≥ -1 (0.01) with 

probability of 0.01. The plot on the right shows the three most extreme points out of 250 (one year’s 

data), illustrating the difficulty of estimating the 1% VaR (diagram not to scale).

Value at Risk (VaR)

The financial industry uses the concept of VaR (value at risk) as a metric to quantify 

the risk of a “position” or investment portfolio. The 1% VaR is the 99th percentile of the 

probability distribution function (of an individual or institutional portfolio), or equivalently, 

the 1st percentile of the complementary distribution function.  

For example, if a portfolio of stocks has a one-day 1% VaR of $1 million, the probability is 

0.01 that the portfolio will fall in value by more than $1 million over a one-day period if there 

is no trading. Obviously, estimating VaR accurately is crucial for financial institutions.
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Heavy-Tailed Random Variables

Much of financial engineering is based on so-called “complete 

markets” and on the use of the Black-Scholes formula. A complete 

market is one in which every price movement can be “replicated” 

by a hedging strategy—an unrealistic assumption. A closely 

related assumption is that asset prices follow a log-normal 

distribution, or in other words, the daily fluctuations in prices 

viewed as percentage changes follow a Gaussian distribution. On 

the contrary, studies of actual asset prices show that they do not 

follow a log-normal distribution.

Long-term averages of asset returns can be shown to follow a 

“stable” distribution. Each stable distribution has an associated 

“exponent” 0 < α ≤ 2. The Gaussian is the only stable distribution 

with finite variance and has α = 2. All other stable distributions have 

α < 2 and have infinite variance. If α < 1, then even the mean can be 

infinite, but this situation rarely arises with actual financial data. 

Such random variables are said to be “heavy-tailed.” Moreover, as 

shown in the figure to the right, real asset movements are better 

approximated by stable distributions with α well below the critical 

value of 2. Note that the smaller the value of α, the more slowly 

the tails decay and the greater the scope for error when Gaussian 

approximations are used.

Averages of heavy-tailed random variables still follow the law of 

large numbers (the average converges in probability to the true 

mean as the number of samples increases) but do not follow the 

central limit theorem (fluctuations about the true mean are not 

necessarily Gaussian). In fact, large excursions about the mean 

are far more “bursty” with heavy-tailed random variables. In short, 

“rare” events are not as rare as log-normal models would predict. 

This may be one reason why large swings (ten or more standard 

deviations when log-normal approximations are used) are far more 

frequent than a log-normal model would predict.

Other Applications for Estimation  
of Heavy-Tailed Distributions

In addition to financial engineering, heavy-tailed distributions 

arise in numerous other applications. Examples include extremes 

in weather (e.g., rainfall) and Internet traffic. Because of their 

asymptotic behavior, heavy-tailed stable distributions are also 

referred to as “power laws.”

For more information: S.T. Rachev (Ed.), Handbook of Heavy-Tailed Distributions in Finance, Elsevier/North Holland, 2003; W.E. Leland et al., On the self-similar 
nature of ethernet traffic, IEEE/ACM Trans. Networking, 2(1), 1-15, 1994.

	  

Daily Returns of the Dow Jones Industrial Average: The plot 

shows the daily DJIA fractional returns from January 2000 to 

March 2007—1,833 samples in all. The green curve, with α = 

1.6819, is the best stable fit and fits the data far better than a 

Gaussian (red curve, α = 2). Note that the best stable fit is also 

skewed, with negative returns more prevalent than positive 

returns. Skewed stable distributions are represented by a nonzero 

value for a second parameter, β (equal to –0.0651 here).

Role for Control Engineers

Several engineers trained in stochastic control and filtering have 

made the transition to financial engineering, both in academia 

and industry. The problems of estimating parameters and signal 

models are common to both areas. Moreover, dealing with heavy-

tailed random variables, the need for which is only now being 

appreciated, requires sound training in probability theory of the 

kind imparted to control engineers.


