
Bugs may be introduced into control

applications at all levels, starting from the

high-level mathematical control laws to the

actual machine code, complete with device

drivers and multitasking. An important

scientific and technical challenge for the

controls and real-time software communities

is to design analysis methods at these various

levels of abstraction, along with verified

compilation and synthesis tools.

Toward Verifiably Correct Control Implementations

During the Ariane 5 rocket’s

maiden flight in 1996, flight

control software malfunctioned

and the rocket had to be destroyed

by remote command early in

its trajectory. The malfunction

was the result of improper

reuse of Ariane 4 software.

Hardware redundancy was no

help since both computers ran

the same incorrect software.

Safer, More Powerful Compilation

Compilers are software and as such may contain bugs. A bug in a compiler may result in

the introduction of bugs in the object code the compiler generates, and thus in the program

as it is executed in the embedded systems. Such bugs may be difficult to find, and thus for

certain safety-critical systems, object code must be matched to source code for inspection,

ruling out code optimization. However, disabling optimization leads to inefficient object

code, requiring higher CPU performance or limitations in functionality.

Although progress has been made in safe compilation for programs written in C,

an outstanding challenge remains for compilers for high-level specifications such

as Simulink—a preferred formalism for many control systems—or complex languages

such as C++.

In turn, this implies that the high-level specification language should have reasonable

and unambiguous semantics.

Enlarging the Scope of Static Program Analysis

Static program analysis refers to the automated analysis of computer programs without

actually executing the programs. Despite the recent availability of industrial-strength

program analysis tools, considerable challenges remain.

• The spectrum of applications needs to be increased. Fewer restrictions on programming

 styles and technologies should be imposed while keeping the likelihood of false alarms low.

• As with compilers, analysis tool implementations should be formally proven correct

 with machine-checkable proofs. This is especially important if, for critical systems,

 some testing is replaced by static analysis.

• Speed and automation need to be enhanced. Tools should be able to prove desired

 properties with minimal user intervention and to provide counterexamples in case

 properties are not verified.

State of the Art

• The CompCert compiler from INRIA and

 University of Rennes-I compiles C to a

 variety of popular targets (PowerPC, ARM,

 x86). The compiler has been proven correct

 mathematically with a machine-checkable

 proof. The assembly programs produced

 thus provably preserve the semantics of

 the source C code.

• The Astrée analyzer can verify many

 control system implementations in C

 if they are fairly static—excluding

 parallelism, dynamic scheduling,

 dynamic data structures, virtual

 methods, etc.

Contributor: David Monniaux, VERIMAG, CNRS, France

Challenges
FOR CONTROL RESEARCH

From: The Impact of Control Technology, 2nd ed., T. Samad and A.M. Annaswamy (eds.), 2014. Available at www.ieeecss.org.

Toward a Trusted Development Chain

High-level specification typically considers idealized mathematical computations.

In reality, differential equations are discretized—for example, real numbers are

implemented using a floating-point or fixed-point arithmetic; multiple clock domains

may be used; mathematical functions may be approximated; and programs are split

among different tasks or machines, which may not be in perfect synchronization.

Some of these transformations are automated, but many are still performed by hand,

most of the time with no mathematical proof of their correctness. Tools are needed that

automate these transformations or at least provide meaningful feedback to implementers.

Control applications increasingly run on multicore processors, including for critical

embedded systems. Manual programming for parallel systems is notoriously error-prone.

Shared memory implementations require careful placement of locking mechanisms—too

few of them and data races may occur, but too many of them and deadlocks may freeze the

system. Automated synthesis or verification of the parallel or distributed implementation,

possibly with a formal proof of correctness, becomes increasingly desirable.

Communication protocols, especially on modern buses, are hard to get right; this is

even truer when security properties are involved (e.g., resistance to eavesdropping or

intrusion). Implementations of such protocols should be based on reusable, well-tested,

or even formally proven libraries, and nonreusable parts should be synthesized from

specifications. Doing this effectively and safely remains a research challenge.

A static software analyzer finds an inductive invariant, which includes but may overapproximate the initial states and all possible reachable states.

If this invariant excludes bad states (as in the left graphic), the analyzer proves the absence of errors in any possible execution of the software.

If the bad states intersect the inductive invariant but not the reachable states (right graphic), a false positive results.

int main() {

 int x = 0;

 int y = 0;

 while (1) {

 /* invariant:

 102 + -y + -x >= 0

 -y + x >= 0

 y >= 0

 */

 if (x <= 50) y++;

 else y--;

 if (y < 0) break;

 x++;

 }

}

Static analyzers, in this case the

experimental tool Pagal, may display

loop and function invariants. This

helps developers understand what is

going on in their software so it can be

debugged more efficiently.

For more information, see the companion flyer on “Verification of Control System Software” in the Success Stories section of this volume.

inductive invariant

initial states

bad states

reachable statesfalse positive

inductive invariant

initial states

bad states

reachable states

