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Thermal Control of Manycore and Multicore Processors

Today’s high-end multicore and manycore CPUs are characterized by 

extreme power density and peak power consumption. The thermal 

dissipation systems for these processors are often designed with 

narrow, or even negative, margins for cost reasons. In addition, 

unexpected thermal emergencies may arise because of significant 

spatial and temporal variability of workloads, leading to nonuniform 

performance, power consumption, and temperature distribution. 

Hot-spot areas age faster since degradation effects are exponentially 

accelerated by high temperatures. This in turn can lead to chip damage 

or failure.

We are in an era of thermally limited computing. Hot-spot and thermal-

runaway prevention based solely on worst-case thermal design is now 

unaffordable. Significant effort is thus being devoted to techniques 

that dynamically control the core power dissipation in a temperature-

aware fashion, i.e., aiming to enforce a safe working temperature across 

the die surface. Today’s multiprocessors include hardware support 

for dynamic power and thermal management, based on introspective 

monitors (i.e., per-core thermal/performance sensors and chipwide 

power gauges) and performance knobs. This infrastructure provides the 

sensors and the actuators for feedback control policies. 

—European Research Council “Multitherman” Project

Thermal Control Challenges

Modern electronic devices have billions of transistors clocked at subnanosecond speed. Local on-die thermal transients have time constants 

of microseconds, whereas at the package and board level we see complex, nonlinear dynamics unfolding in seconds to minutes. A single chip 

can have hundreds of thermal domains that vary greatly in workload and intrinsic power density. Power consumption and heat generation 

are thus spatially and temporally heterogeneous, with nonlinear temperature dependency caused by leakage. In addition, the heat dissipation 

path is composed of different materials that lead to a multimodal time-domain response. 

Accurate on-chip temperature sensors have high area cost and are affected by significant systematic and random noise. In addition, to keep 

post-manufacturing testing costs low, not all the sensors are accurately calibrated. Hence, manycore thermal management is a large-scale, 

hybrid, nonlinear multivariable control problem, affected by significant sensor, actuator, and process noise. 

Top : Intel® Dual-Core Merom thermal map (Source: Proc. 

Int. Solid-State Circuits Conf., 2007); Bottom: Thermal map 

of the Intel single-chip cloud computer under full utilization 

(temperature scale in degrees Celsius)
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thermal path direction and model

Linear (left) and logarithmic (right) transient analysis plots. The temperature 

is well approximated by a third-order exponential curve. The stem plot (right) 

shows the three time constants (4.9 ms, 94.6 ms, and 29.2 s).
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Scalable, Optimal Thermal Control for Manycore Systems 

The previously highlighted challenges call for optimal control features:

• Optimality: The thermal controller acts (by voltage and clock scaling and shutdown) to reduce power consumption, but it must strive to 

minimize performance degradation while limiting temperatures to below a safe threshold across the entire silicon die. A model predictive 

control (MPC) approach can reduce performance degradation with respect to simple threshold-based control.

• Predictability: Regular workload phases can be exploited by a thermal model to predict future temperatures. This calls for system-level 

thermal models that relate different functional units and hardware macro block activity to the thermal map evolution.

• Adaptability: Fluctuations of process variations and ambient conditions (temperature, heat sink occlusion, etc.) may change the thermal 

behavior over the lifetime of a component. Model recalibration strategies and online system identification algorithms are required.

• Robustness: Thermal sensor readings are affected by significant output noise. System identification and controller design approaches are 

needed that are robust to measurement and process noise.

• Scalability: The trend toward massively parallel (100+) cores and hardware accelerators integrated on 3-D stacked dies calls for scalable 

control algorithms running in a few microseconds. Distributed control algorithms are needed that leverage the spatial localization of heat 

exchange and can exploit parallel hardware.

• Modularity: Thermal control not only happens at the hardware level, but it must interact with software layers such as the workload 

dispatcher and task scheduler. 

For more information, visit http://www-micrel.deis.unibo.it/multitherman/.

Distributed and robust thermal model learning strategy based on 

ARX-plus-noise system identification. The model takes as input 

the core power consumption and neighbors’ core temperatures. It 

estimates the noise variance and the model parameters suitable 

for the Kalman predictor. The complexity of each single model is 

constant as the number of cores increases. Inputs to the Kalman 

predictor are also the current core power consumption and 

neighbors’ core temperatures.

Distributed model predictive thermal controller. Each core executes 

its local control with temperature information from neighbor 

cores. Target frequency (fEM) requests are generated by the energy 

manager (EM). Target power consumption (PEM) is derived from fEM 

and application properties (the nonlinear f2P function). The MPC 

exploits the thermal model to find the minimal power reduction that 

keeps the predicted temperature below a safe threshold. This value 

(PTC) is then converted to a frequency setting (fTC) through the P2f 

inverse function. 

Model validation: input power (dashed), measured  

temperature (black), and one-step-ahead predicted 

temperature (gray). The learned model can be used effectively 

at runtime to estimate the actual silicon temperature. 


