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I would like to begin by thanking the Control Systems So-
ciety for awarding me this honor.

Our field attracts a unique blend of bright and knowledge-
able researchers, any of whom are equally deserving of this
Prize.

So, I am especially grateful to have been selected as the
speaker.



What is “ISS”?
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The main part of the talk will deal with the ISS notion.



Sorry, not ISS . . .
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You are at the wrong lecture if you thought that ISS is an
acronym for International Space Station,



Nor ( )

Indonesian Skeptic Society
International Superstar Soccer
Imprinted Sportswear Shows
Intelligence Studies Section
Internet Security Systems
Internet Support Service
Institute of Social Studies
International Summer School
Information Systems Support
Istituto Superiore di Sanita’
Industry Solutions & Services
Institute of Social Science
International Shared Services
International Sound Symposium
. . .
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or for that matter any of these others that you find when
you search the web (I am not making them up!).
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My plan for this talk is to first introduce input to state
stability, including its role in feedback design, and to provide
statements of the main theoretical results about ISS.

I will then discuss associated notions such as input to output
stability, detectability, and integral ISS,

and will conclude with a brief sampler of theoretical tools,

as well as a mention of some of the many open problems
that remain, and a couple of sample applications.

In a second part of the lecture, I will spend a few minutes
talking about Systems Molecular Biology, a subject which, I
believe, has the potential of becoming, in the long term, one
of the most important areas of application for systems and
control ideas (including, of course, input to state stability :),
and which presents huge challenges to our field.



Overall Theme: ISSomics
stability-type questions for i/o systems

{ {(sub)systemu y

motivations include:

• adding to system theorist’s “toolkit”
for studying systems via decompositions

• quantify response to external signals

• unify state-space and i/o stability theory
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In the spirit of biology, which studies genomics, proteomics,
and so forth, the overall theme of this talk will be that of
ISSomics, which deals with stability-like questions for sys-
tems with inputs and outputs.

There are many reasons for studying such questions:

one of the strengths of systems theory is in providing a
methodology for analyzing complex systems, when viewed
as an interconnection of simpler devices, and ISS tools are
often useful in that context;

in particular, ISS provides one way to quantify system re-
sponses;

and yet another motivation is more purely mathematical,
namely the unification of state space and input/output sta-
bility notions.



Decompositions
even if original system is “autonomous”

ẋ = f(x)

must study “systems with i/o signals”

(otherwise, how to interconnect?)
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Regarding the first motivation, the study of systems through
decompositions,

note that, even if we wish to study a closed or autonomous
system, we must allow the subsystems to have inputs and
outputs, since, otherwise, one cannot even define “intercon-
nection”.



Response to External Signals
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controls measurements

plant

controller

y1u1

u2y2

u = (u1, u2) = noise, disturbances, tracking signals, . . .
y = (y1, y2) = distance to desired states, tracking error, . . .
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Regarding the motivation of studying responses to external
signals,

of course, the “inputs” to the system may represent dis-
turbances, or tracking signals, in a regulator problem, and
outputs might be measurements, or error signals.



Defining ISS

formalization of “stability” of u(·) 7→ y(·),
accounting for initial states & transients

talk concentrates on notions relative to
globally attractive steady states

but, general “philosophy”:

◦ more arbitrary attractors
◦ local theory
◦ robust/adaptive versions . . .

(for applications: talks, papers, books, . . . )
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Our first objective will be to provide a definition of input
to output stability which takes into account internal states
and transient behavior;

actually, for simplicity, I will initially only talk about input
to state stability and will introduce outputs later.

In addition, I will only address notions of global stability
with respect to equilibria ,

but many of the concepts and results may be extended to
local stability, and to stability of attracting sets, such as
periodic orbits,

and there are robust stability versions as well.

The talk will focus on theoretical results and I will not cover
in any detail the many applications, which can be found in
papers and textbooks.



Merge Lyapunov/Zames ?
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For systems without inputs and outputs, the classical no-
tions of stability were introduced by Lyapunov, well over a
hundred years ago;

on the other hand, George Zames, and many others, devel-
oped a rich theory of stability for input/output operators,
starting in the mid 1960’s.

The notion of ISS allows us to combine features of both.



ẋ=f(x, 0) Stable not Enough
for linear ẋ = Ax+Bu, A Hurwitz ⇒
u→0 ⇒ x→0; BIBS; finite u(·) 7→ x(·) norm

but false for nonlinear: ẋ = −x+ (x2 + 1)u

even though with u = 0 is GAS: ẋ = −x
(even worse: u ≡ 1 ⇒ explosion !)
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For linear systems, the combination is not an issue, because
internal stability implies all types of input to state stability,

such as convergence of states to zero when inputs converge
to zero, bounded-input bounded-state stability, and finite-
ness of operator norms.

But for non linear systems, matters are more complicated,

as illustrated by this example which is exponentially stable
when the input u is identically zero, but which exhibits un-
stable behavior when forced by an input which converges to
zero.

The x-squared term affects the system when the input is not
zero, dominating the stable linear part, but has no effect on
the unforced system.



So Require I/O Boundedness
bound |x(t, x0, u)| in “nonlinear gain” sense

|x(t)| (“ultimately”) ≤ γ (‖u(·)‖∞)

γ ∈ K∞ :
γ(0)=0
C0, ↗ +∞

(defining concepts for “input → state” map
but may also apply to “input → output”, IOS

for now, sup norms; later integral norms)
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So we must explicitly impose boundedness by asking
that the amplitude of the state be ultimately bounded; we
express this condition by means of K-infinity functions, that
is to say using a nonlinear increasing function of the ampli-
tude of the input.

I will mostly talk about input to state behavior, but I will
later mention extensions to the more general case of out-
puts, and I will also discuss other norms than sup norms.



ẋ=f(x, 0) GAS
global asymptotic stability (GAS) of origin
means:

|x(t, x0)| ≤ β (|x0|, t) (∀x0 , ∀ t ≥ 0)

for some β(↗,↘) ∈ KL (β(0, ·) = 0, C0)

|x(t, x0)| ≤ β (|x0|, 0)  stab (small overshoot)

|x(t, x0)| ≤ β (|x0|, t) −→
t→∞

0  attractivity
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In order to finish introducing the notion of ISS, let me first
remind you of some formalism: global asymptotic stability
of the origin of an unforced system is usually given as an
epsilon-delta definition,

but a totally equivalent way of defining it is using “KL func-
tions”.

That is, one postulates that the solution must be bounded
above by a function which increases in its first variable, the
norm of the state, and decreases in its second variable, time;

this restricts overshoot and forces solutions to converge to
the origin.



Input-to-State Stability
Definition of ISS:
(∃ β ∈ KL, γ ∈ K∞)

|x(t, x0, u)| ≤ max {β(|x0|, t), γ (‖u‖∞)}

t large: x(t) bounded by γ(‖u‖∞) indep of x0

but transient (overshoot) depends on x0

6

-

6

?

≈ |x0|

t

x

6

?
≈ ‖u‖
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We can now define ISS: we just ask that an estimate like
this holds:

The state is bounded by the maximum (a sum could be
used, equivalently) of a KL-term, that handles the effect of
initial states when t is small, and an input gain term, that
is effective when t is large;

this gives exactly global asymptotic stability if there are no
inputs and, in general, says that the overshoot depends on
the initial state and the asymptotic behavior, depends on
the size of the input.



Linear Case, for Comparison

ẋ = Ax+ bu  |x(t)| ≤ β(t) |x0| + γ ‖u‖∞

β(t) =
∥∥etA∥∥ → 0

γ = ‖B‖
∫ ∞

0

∥∥esA∥∥ ds < ∞

is particular case of ISS estimate

|x(t)| ≤ β(|x0|, t) + γ (‖u‖∞)

[equiv defn (6= β, γ) using “+” instead of “max”]
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ISS is obvious, for stable linear systems, since variation of
parameters gives us an ISS estimate using linear gains.

The estimate has an additive form, but one can equally
well define ISS using a sum instead of a max, just changing
slightly the beta and gamma functions.



Feedback Redesign
suppose ẋ = f(x, u) stabilized under u = k(x):

�

- system

feedback

ẋ = f(x, k(x))

what is effect of actuator disturbances d(·) ?

�

6

- system

feedback

��
��

-d

ẋ = f(x, k(x)+d)

noise may destabilize (not ISS) !
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To show why ISS plays an important role in feedback re-
design, let me consider the following problem:

suppose that a system has been stabilized under feedback
in the sense that a closed-loop system is stable.

But it may well happen that actuator disturbances destabi-
lize the system.



Example
may happen under feedback linearization design:

ẋ = x+ (x2 + 1)uwwww� u :=
−2x

x2 + 1
+ d

ẋ = −x+ (x2 + 1) d
not ISS: d(t) =

1
√

2t+ 2
6→ x(t) → 0

but if, instead:

ẋ = x+ (x2 + 1)uwwww� u :=
−2x

x2 + 1
−x + d

ẋ = −2x+ −x3 + (x2 + 1) d

this is still stable when d ≡ 0

but in addition is ISS: −x3 dominates (x2 + 1)d
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This can happen even in a simple feedback linearization
example:

suppose we cancel the nonlinearity and feed back a linear
function of the state.

This works fine if there is no disturbance d. But if there is a
disturbance, then we are back to the counterexample, that
I mentioned earlier, in which a stable input destabilizes the
system.

The interesting thing is that, if we redesign our feedback
law by just adding a linear term,

then the new closed-loop system is still stable when there
are no disturbances, but, in addition, it is now ISS, because
the cubic term dominates the disturbance.



General Theorem (EDS, TAC’89)

ẋ = f(x, u) = g0(x) +
m∑
i=1

uigi(x) (g0(0) = 0)

if ẋ = f(x, k(x)) has x = 0 as GAS equilibrium

then ∃ feedback u = k̃(x) s.t.

ẋ = f(x, k̃(x) + d) is ISS with input d(·)

�

- ẋ = f (x, u)

u = k(x)

⇒
�

6

- ẋ = f (x, u)

u = k̃(x)

��
��

-d

X

Corollary: fdbk linearizable ⇒ ISS-stabilizable
Kokotovic et.al.: recursive design, backstepping
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In fact, a general theorem says that, whenever one can sta-
bilize a system, it is possible to redesign the control law so
that the closed-loop system is input to state stable with re-
spect to actuator disturbances.

In particular, every feedback linearizable system can be
made ISS.

This is just tip of the iceberg: there is a beautiful theory
of recursive design, based on backstepping and other tech-
niques, that exploits these ideas.
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Now that I introduced ISS, let me discuss some of the basic
theory.



Natural Notion?
a mathematical concept is “natural” (⇒ useful !)
if it has many equivalent characterizations

ISS turns out to be equivalent to:

� ∃ proper robustness margins

� dissipativity (in “input − state” form)

� separation: AS + asymptotic gain

� energy-like stability

and many other properties

next part of talk will explain these
20

One may argue that a mathematical notion will be useful if
it is natural , in that it can take many equivalent forms.

So, let me briefly discuss how ISS is exactly equivalent,
among other properties, to the existence of robust margins
of stability, to dissipativity, to a combination of stability
and finite asymptotic gain, and to an energy-like stability
notion.



Fine Print Stuff
unless otherwise stated, all results hold for arbitrary
(finite dimensional) systems

ẋ(t) = f(x(t), u(t)) (x(t) ∈ Rn)

inputs are Lebesgue-measurable locally (essentially) bounded

u(·) : [0,∞) → Rm

the map f : Rn × Rm → Rn is locally Lipschitz, f(0, 0) = 0

when outputs appear, output map is continuous
when feedbacks appear, they are loc. Lipschitz, k(0) = 0

partial results available (but not discussed here)
for time-varying and discrete-time systems,
various classes of infinite-dimensional systems, etc

21

The theorems that I will mention all hold under minimal as-
sumptions, for finite-dimensional and time invariant continuous-
time systems.

Generalizations to time-varying systems, to stability of more
complicated attractors than equilibria, to discrete time sys-
tems, and so forth, have been also pursued to various de-
grees, but I will restrict attention to this case.



ISS ≡ Robust Stability
ISS ⇐⇒ ∃ “margin of stability” ρ ∈ K∞ :

ẋ = f(x,∆(t, x))

�

- ẋ = f(x, u)

∆

u x

has origin uniformly globally asympt stable
∀ t-v feedback laws ∆ s.t. |∆(t, x)| ≤ ρ(|x|)
(Yuan Wang and EDS, SCL’95)

compare: A Hurwitz ⇒ A+ ∆A too

intuition: |x(t)| ≤ max {β(|x0|, t), γ (‖u‖∞)}
β term dominates, provided u � x
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The first theorem says that ISS is equivalent to robust sta-
bility, in the sense that there is a margin of stability , which
is large for states far from the origin (that’s what “K infin-
ity” means), and the system remains globally stable under
all feedbacks whose magnitude is bounded by this margin.

Observe that for linear systems, a matrix remains Hurwitz
under small perturbations, so margins always exist;

in that sense, ISS is a better generalization of linear stability
than plain global asymptotic stability.



ISS Superposition Principle

|x(t)| ≤ max {β(|x0|, t), γ (‖u‖∞)}

⇒ |x(t)| ≤ β(|x0|, t)

when u ≡ 0 (GAS) &

∃ asymptotic gain γ∈K∞

lim
t→+∞

∣∣x(t, x0, u)
∣∣ ≤ γ (‖u‖∞)

ISS ⇐⇒ ∃ asympt gain & unforced sys stable

(Wang and EDS, TAC’96)

sufficiency hard: non-uniform on controls; no (even weak) compactness
23

As we already saw, if a system is ISS then the unforced sys-
tem is stable,

and it is also clear, since the overshoot term dies out for
large t, that the state approaches a ball whose radius is de-
termined by the size of the input.

It is a surprising and nontrivial result that the conjunction
of these two properties is in fact equivalent to ISS.

Mathematically, the challenge lies in the fact that the ulti-
mate bound is not required to be uniform on inputs, and
there is no convexity and compactness to help, even in the
sense of weak topologies.



Dissipation Characterization

ISS ⇐⇒ ∃ ISS-Lyapunov function

(Wang and EDS, SCL’95)

V smooth, proper, pos def; ∃ γ, α ∈ K∞:

V̇ (x, u) = ∇V (x) f(x, u) ≤ −α(|x|) + γ(|u|)

i.e., dissipation inequality

V (x(t2)) − V (x(t1)) ≤
∫ t2

t1

w(u(s), x(s)) ds

holds along all trajectories of the system,
with “supply” function w(u, x) = γ(|u|) − α(|x|)

generalizes converse Lyapunov: u=0  Lyap function
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A third theorem says that ISS is equivalent to the existence
of an ISS-Lyapunov function,

which amounts to a dissipation property, with a smooth
storage, or energy-like, function which is allowed to increase
at a rate bounded by the instantaneous input magnitude and
which otherwise decreases.

Note that for systems without inputs, the u term vanishes,
and the theorem reduces to the classical converse Lyapunov
theorem of Massera.



Cascades OK (EDS, TAC’89)

cascades of ISS are ISS (u≡0: GAS & ISS ⇒ GAS)

ż = f(z, x)
ẋ = g(x, u)

ISS (x input)
ISS (u input)

- -
u

zx

V̇1(z, x) ≤ θ(|x|) − α(|z|)
V̇2(x, u) ≤ −2 θ(|x|) + γ(|u|)

matching ISS-Lyapunov fncs
(Teel and EDS, TAC’95)

 W (x, z) := V1(z) + V2(x) is ISS-Lyap for cascade:

Ẇ (x, z) ≤ −θ(|x|) − α(|z|) + γ(|u|) X
generalization:
u = k(z), k small

6

�

- -

k

zx

γ(|u|) ≤ (1−ε)α(|z|)  Ẇ (x, z) ≤ −θ(|x|)−εα(|z|) < 0 X
small-gain theorem (Jiang-Teel-Praly, MCSS’94)
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Another way, in which ISS is natural as a notion of stability,
is that every serial connection of ISS systems is again an ISS
system.

In particular, driving an ISS system by a stable system pro-
duces a stable system.

This fact can be easily proved directly, but it is especially
evident from a dissipation characterization

given appropriate storage functions for each system, their
sum is a storage function for the cascade

(the positive input term of the z system is canceled by the
negative stability term of the x system).

More generally, feedback does not destroy stability, if the
feedback is small enough that V still decreases

which leads to a most useful small-gain theorem for ISS.



E.g. of ISS Design
toy example, just for illustration of ideas,
angular momentum stabilization of rigid body:

Iω̇ =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 Iω +

0 0
1 0
0 1

 v

controls = two torques acting along principal axes;

ω = (ω1, ω2, ω3) angular velocity, body-attached frame,

I = diag(I1, I2, I3) principal moments of inertia; assume I2 6= I3

change coordinates  

ẋ1 = x2x3

ẋ2 = u1

ẋ3 = u2

(I2−I3)x1 = I1ω1,x2 = ω2, x3 = ω3, I2u1 = (I3−I1)ω1ω3+v1, I3u2 = (I1−I2)ω1ω2 + v2
26

It is worth looking at a simple toy example to understand
how ISS ideas can help in feedback design.

Let us take the textbook problem, of angular velocity sta-
bilization of a rigid body, with two torques as controls,

which under a coordinate change becomes the cascade of
a one-dimensional system (described by x1) and a linear
system.



Change State & Input Coords
ẋ1 = x2x3 ẋ2 = u1 ẋ3 = u2

globally stabilizing feedback:

u1 = −x1 − x2 − x2x3 + d1

u2 = −x3 + x2
1 + 2x1x2x3 + d2

because, with z2 := x1 + x2, z3 := x3 − x2
1 :

ẋ1 = −x3
1 + α(x1, z2, z3)

ż2 = −z2 + d1

ż3 = −z3 + d2

x1-subsys ISS: degx1
α ≤ 2 so cubic dominates

thus cascade ISS (∴ GAS when d1 = d2 ≡ 0)
27

The x1 system is clearly stabilizable when thinking of x2
and x3 as inputs, so the basic redesign theorem says that
we can make it ISS, which then implies, because of the cas-
cade result, that the complete system can be made ISS as
well.

If one carries out this idea, the net result is that the feedback
law shown here globally stabilizes the rigid body model, and,
moreover, does so in an ISS manner.

This is shown, by looking at the closed-loop system in slightly
different coordinates, in which the system can be seen as a
cascade of two ISS systems.

The cubic term provides the margin of stability for the x1
system, and z2,z3 give a stable linear system.

This is just a simple example of a systematic approach to
constructive feedback design based on ISS ideas.



Energy-Like Norms (EDS, SCL’98)

∫ t

0

γ1(|x(s)|) ds ≤ max

{
κ(|x0|) ,

∫ t

0

γ2(|u(s)|)ds
}

for all trajectories (∃ γi, κ ∈ K∞)
compare: everything quadratic, “H∞”

ISS ⇐⇒ ∃ such an
∫

→
∫

estimate

on the other hand, mixed energy/sup:

γ1 (|x(t)|) ≤ max

{
β(|x0|, t) ,

∫ t

0

γ2(|u(s)|) ds
}

leads to new notion: iISS (integral ISS)
28

Finally, in this brief discussion of characterizations of ISS,
let me mention a last theorem, namely that ISS is also equiv-
alent to the existence of estimates of an integral-to-integral
type,

analogous to an H-infinity estimate if all nonlinearities were
quadratic.

On the other hand, and very surprisingly, a genuinely new
concept finally arises if we mix integral and sup norm esti-
mates.

This concept of integral input to state stability is strictly
weaker that ISS, and I’ll say a few words about it later.
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Let me now turn to input/output and detectability proper-
ties.



Input/Output Stability
IOS: input to output stability defined for
systems with outputs ẋ = f(x, u), y = h(x)

x- -u → 0 ⇒ y → 0

|y(t)| ≤ max {β(|x0|, t) , γ(‖u‖∞)}

overshoot bounded by a function of |x0|,
just as in linear regulator theory;
related to “partial stability” (subset of vars)

⇐⇒ dissipation: Wang and EDS, SICON’01
30

The notion of input to output stability is defined for sys-
tems with outputs, in a manner totally analogous to ISS.

One just replaces the estimate on states, by an estimate on
outputs, using KL functions to bound initial-state depen-
dent, transient behavior and a K-infinity function to express
the influence of input amplitudes.

ISS is a special case, of course, when the output is just the
state.

Observe that the overshoot is controlled by the initial state,
and this is what we want, since in regulator problems, for
instance, the mismatch between an internal model and an
external signal determines the transient behavior.

One may characterize IOS in dissipation terms, but let me
skip the technicalities.



IOSS (Krichman-Wang-EDS, SICON’01)

zero-detectability typically: u ≡ y ≡ 0 ⇒ x(t)→0

— but this is weak for nonlinear systems:
not “well-posed” (what happens if u, y ≈ 0?)

input/output to state stability (IOSS):

|x(t)| ≤ max {β(|x0|, t) , γ1(‖u‖) , γ2(‖y‖)}
(more precisely: sup norms restricted to [0, t])

“stability from the i/o data to the state”
u & y small ⇒ x eventually small

IOSS ⇐⇒ ∃ IOSS-Lyapunov function:

∇V (x) f(x, u) ≤ −α1(|x|) + α2(|u|) + α3(|y|)
31

Yet another ingredient of the theory is a notion of zero-
detectability .

One might define detectability by asking that identically
zero input and output signals imply that the internal state
converges to zero.

However, it is far more reasonable, and not equivalent when
dealing with nonlinear systems, to ask that small inputs and
outputs should imply asymptotically small internal states.

The notion of IOSS makes this precise, including, as always,
a term that quantifies the transient behavior, and incorpo-
rating a term for the amplitudes of inputs and outputs.

For large t, the beta term goes to zero, so, if u and y are
small, then the state is eventually small as well.

IOSS stands for input and output to state stability, con-
sistent with the idea that small inputs and outputs imply
small internal states.

Also here, a fundamental theorem states that IOSS is equiv-
alent to dissipativity, with smooth storage functions, in the
expected sense.



Output Stabilization ⇒ IOSS
Remark:

��
��

��
��

�

-

6

�

?

-

C

P

yd

ud

∃ C ISS stabilizing w.r.t. external “disturbances” ud and yd

⇒ original system is IOSS

assuming ye ≡ 0 ⇒ ue ≡ 0

for any initial state ξ and control u, pick ud := u and yd := −yξ,u
32

One can prove that the IOSS property is in fact necessary
for stabilization under partial observations.



Fundamental Relationships
very easy, given the definitions:

IOS & IOSS ⇐⇒ ISS

i.e., intuitively:

external stab & detectab ⇐⇒ internal stab

- -x → 0u → 0 y → 0

if u → 0 then y → 0 (by external stability),
and this then implies x → 0 (by detectability)

converse: if internally stable, then u → 0 ⇒ x → 0,
so in particular this happens when y(t) → 0 (detectability)
and it always holds that y(t) → 0 (i/o stability)

33

There is a fundamental relationship among the three con-
cepts which I introduced, saying basically that external sta-
bility and detectability together are equivalent to internal
stability.

Intuitively, if inputs are small, then input/output stability
tells us that outputs are also small, and then, detectability
insures that the internal states are small.

But the main point is that the equivalence holds for IOS,
IOSS, and ISS as we defined.

This is yet another indication that these are the right no-
tions.
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There are many other subjects which I could cover regarding
the ISS formulation of systems properties. Let me mention
a couple of them.



iISS (Angeli-Wang-EDS, TAC’00)

γ1 (|x(t)|) ≤ β(|x0|, t) +

∫ t

0

γ2(|u(s)|) ds

iISS: integral input → (sup-norm) state stab

nonlinear analog of “H2” (L2 → L∞) gain

iISS ⇐⇒ ∃ iISS-Lyapunov function

iISS-Lyap function: α>0, not nec. α 6∈ K∞

V̇ (x, u) = ∇V (x) f(x, u) ≤ −α(|x|) + γ(|u|)
ISS

⇒
6⇐ iISS

e.g.: bilinear: ẋ = (A+
∑m
i=1 uiAi)x+Bu

A Hurwitz ⇒ iISS, but in general not ISS
(or even BIBS): ẋ = −x+ ux, u ≡ 2

35

As I said before, mixing integral and pointwise estimates
results in a genuinely new notion, that of integral ISS.

There is a dissipativity characterization that goes along with
integral ISS,

and one can prove that this property is strictly weaker than
ISS.

For instance, bilinear systems which are stable when inputs
are zero are always integral ISS, but are seldom ISS.



iISS & Output Dissipation
useful if dissipation only wrt some variables

system dissipative wrt output function y = h(x):

∇V (x) f(x, u) ≤ −α(h(x)) + γ(|u|)
h-detectable:
y(t) = h(x(t)) ≡ 0 ⇒ x(t) → 0 as t → ∞

iISS ⇐⇒ (∃h) h-detectable & h-dissipative

(Angeli-Wang-EDS, TAC’00)
e.g.’s with tracking control, iISS wrt time-varying signals
in larger class than designed for; V = energy, y = velocities

36

Integral ISS corresponds to a sort of partial dissipativity,
together with weak detectability,

and it has proved useful when studying mechanical tracking
problems, where the dissipativity property can be checked
using energy functions.



Bode’s Minphase
a nonlinear, global, well-posed, notion of Bode’s
minimum phase systems:

OIS = output to input stability

(“inverse system is ISS”)

- -⇒ x → 0⇒ u → 0 y → 0

Liberzon-Morse-EDS, TAC’02

• “zero dynamics” ISS
• applics to adaptive control

37

Finally, let me point out that one can define a notion of
minimum phase system, generalizing Bode’s concept for
linear systems.

This property is defined via input to output stability of the
inverse system, or equivalently as an ISS property for the
zero dynamics.

This notion plays a role in adaptive control, for instance.



Outline
� Input to State Stability

• Motivation, Definition, Feedback Redesign

• Robust Stability, Superposition, Dissipation

• I/O Stability & Detectability; Relationships

• Other Notions: iISS, Minphase

• Taste of Theory: DI’s, Viscosity

• Some Open Problems & Applics; Summary

�Systems Molecular Biology
• E.g.: MAPK Cascades, Stability Questions

• E.g.: E.coli Chemotaxis, IMP

• New Tools: Measurements, System Perturbations

• Discussion

�Acknowledgments
38

I did not discuss proofs of theorems, nor do not intend to
so,

but let me show you a couple of examples of some of the
issues involved, to give you a flavor of parts of the theory.



Differential Inclusions

ẋ(t) ∈ F (x(t))

e.g. for ISS system:
F (x)={f(x, u), |u|≤γ(|x|)} (stability margin)

one key ingredient: characterize uniform GAS:

|x(t)| ≤ β(|x0| , t)

UGAS ⇐⇒ (∃ V ∈ C∞, α ∈ K∞)
∇V (x) · v + α(|x|) ≤ 0 ∀ v ∈ F (x)

(Lin-Wang-EDS, SICON’96)

Corollary: dissipation characterization of ISS

Teel-Praly, COCV’00: ∃V more general DI’s
39

For ISS systems, differential inclusions arise when inputs
are constrained by a stability margin.

A key ingredient in the theory is the characterization of uni-
form global asymptotic stability, by Lyapunov functions.

A Hamilton-Jacobi partial differential inequality, forcing di-
rectional derivatives to be negative along all constrained
motions, is shown to have smooth solutions.

This leads, in turn, to the dissipation characterization of
ISS.



DI’s, ctd’
another key ingredient: relaxations

can approx sols of ẋ ∈ co(F (x)) by ẋ ∈ F (x)
on infinite intervals (Wang-EDS, TAC’96)

Corollary: GAS (+stability) ⇒ uniform GAS

[F (x) = {f(x, u)} generally not convex in u,
so u(·) 7→ x(·) not C0 wrt weak topology!]

Corollary: superposition principle for ISS

(Ingalls-Wang-EDS, Proc.Amer.Math.Soc.’02:
extended to arbitrary locally Lipschitz DI’s)

40

Another central ingredient is a relaxation theorem for dif-
ferential inclusions, extending Filippov’s theorem to infinite
intervals.

This gives, as a corollary, the equivalence of non-uniform
and uniform global asymptotic stability for non-convex dif-
ferential inclusions,

and the superposition theorem for ISS then follows.



Taste of Theory: Viscosity
often nonsmooth V ’s useful:

“∇V (x) · v + α(|x|) ≤ a ∀ v ∈ F (x)”  

ζ · v + α(|x|) ≤ 0 ∀ v ∈ F (x) & ζ ∈ ∂vV (x)

(HJB PDE in viscosity form)

viscosity subgradients: ζ=∇ϕ
∀ ϕ = supporting C1 function

e.g. ∂vV (0) = [−1, 1]
for V (x) = |x|

discont stab (EDS, SICON’82; Clarke-Ledyaev-Subbotin-EDS, TAC’97),

and “ẋ = f(x, k(x+ e))” (see below), local, discont k (EDS, COCV’99)
41

Nonsmooth analysis is also beginning to play a role in ISS
theory.

Although all the results that I mentioned until now were
stated in terms of smooth V ’s, nonsmooth V appear when
discontinuous feedback is used, or when studying ISS prop-
erties with respect to observation errors, or in “measure-
ment to error stability”, a property that I will mention when
I discuss open problems.

For nonsmooth storage functions V , dissipation inequalities
are understood in a viscosity sense.

This means, in simple terms, that one must replace the gra-
dient of V by generalized gradients, which amounts to using
the gradients of differentiable functions that just touch the
graph of V , like the green one in the picture, which has the
dotted line as tangent, and there are many of these at those
points where V has a corner.
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I believe that the area of ISS is still very much in its infancy,
as evidenced by the huge number of open problems that
remain.

Let me mention a couple of them.



Some Open Problems
structure of Lyap funcs for ẋ ∈ F (x) (and ISS-Lyap)

for n (dimension of state space) 6= 4, 5,
∃ coordinate change  V quadratic

(Grüne-Wirth-EDS, SCL’99)

(“coord change”: C0(Rn), C∞(Rn \ {0})

open: is result true for dim n = 4 and/or 5?

(∼ relations ISS & H∞ gains)

(Poincaré & Smale/Milnor cobordism)

43

The first one is purely mathematical, but a lot of fun: it has
to do with the structure of storage functions.

It is known that, for all systems of dimension different from
4 and 5, one can find, up to coordinate changes, quadratic
storage functions, but the result is still open in dimensions
exactly 4 and 5.

This is all totally useless in practice, since the coordinate
changes are impossible to construct explicitly, but know-
ing if the result is always true would clarify certain theo-
retical issues concerning the relationships between ISS and
H-infinity control.



Proof Sketch: V ’s Quadratic
levels S := {V (x) = 1} homotopically equivalent to Sn−1:
S ' S× R (R contractible) & S× R ≈ Rn \ 0 ' Sn−1 (flow)
⇒ {V (x) = 1} diffeomorphic to Sn−1, provided n 6= 4, 5
(enough room to “untangle” curves; ad-hoc in low dims)

go to level set via an appropriate normalized gradient flow
and then use diffeomorphism θ : {V = 1} ' {|z| = 1}
(h-cobordism; Poincaré would give homeomorphism if n6=4)
must adjust s.t. smooth away from 0 and C0 at 0; must apply robustness characterization to  UGAS problem
for n ≥ 6 sublevel set is compact, connected smooth manifold with a simply connected boundary  diffeo to ball

44

The proof is based on the fact that sublevel sets of Lyapunov
functions are smooth connected manifolds whose boundaries
are homotopically equivalent to spheres, which implies, as a
consequence of Smale’s and Milnor’s work on the Poincare’
conjecture, that level sets are diffeomorphic to spheres, and
one can then use a normalized flow to produce the coordi-
nate change.

The problem is that the needed differential-topology results
are still open in dimensions 4 and 5.



Some Open Problems, ctd’
ISS wrt observation errors, separation principle
recall: ∃ (C0) stabilizing feedback
⇒ redesign s.t. ẋ = f(x, k(x) + d) ISS wrt d
(robustness to actuator errors/noise)

what about observation error?

ẋ = f(x, k(x+e))

if OK: may use any unbiased state estimator:

ẋ = f(x, k(x̂))) = f(x, k(x+ e))

and x→ 0 if estimation error e = x̂−x→ 0

but(!): Freeman, TAC’96: redesign impossible
using continuous time-invariant state feedback
open: theory for t-v, dynamic, hybrid, . . .

45

Coming back to earth,

we said that one can redesign feedbacks to get ISS with re-
spect to actuator errors.

The open problem is, if one can also get ISS with respect
to observation errors.

If this were always possible, the output stabilization prob-
lem would be much easier, since any unbiased state estima-
tor could be used for feedback.

ISS would tell us, that when the estimation error goes to
zero, the state converges to zero.

Unfortunately, there are counterexamples, showing that re-
design using continuous, time-invariant, feedback is not al-
ways possible, but there are no general results using hybrid
or dynamic controllers.



Relative ISS & Regulation
y (“error”)

w (“measurement”)
-

-

-

systemu

ẋ = f(x, u) y = h(x), w = g(x)

input-measurement to error stable (IMES):

∃ β ∈ KL & γ1, γ2 ∈ K∞ s.t.

|y(t)| ≤ max{β(|x0| , t), γ1(‖w‖), γ2(‖u‖)}
in particular: IOS: w = 0, IOSS: y = x

property is key to regulator questions

(partial) nonsmooth Lyapunov characterizations

(Ingalls-Wang-EDS, CDC’02) open: smooth
46

One last problem that I would like to mention, concerns a
variant of ISS for systems with two types of outputs, which
we may call “errors” and “measurements”.

This notion arises in regulator problems, where it makes
sense to ask that small inputs and measurements should
imply small errors.

When the error is the state, we recover the detectability or
IOSS property, and when the measurement function is not
there, we get input/output stability.

We do not, as yet, have a satisfactory characterization of this
property. For now, we only have partial results involving
nonsmooth dissipation functions.
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I do not intend to talk about applications in any detail, but
let me just give you the flavor of a couple of recent ones.



An Example of “ISSomics”
Arcak and Kokotovic, Automatica Dec. 2001:
jet engine stall; axial compressor model

single-mode approx. of Moore-Greitzer PDE

φ̇ = −ψ + 3
2
φ+ 1

2
− 1

2
(φ+ 1)3 − 3(φ+ 1)R

ψ̇ =
1

β2
(φ+ 1 − u)

Ṙ = σR(−2φ− φ2 −R) (R ≥ 0)

φ = mass flow relative to setpoint

ψ = pressure rise relative to setpoint
R = magnitude of first stall mode

objective: stabilize using only y=ψ (pressure)

48

One example of the general ISSomics philosophy concerns
the control of jet engine stall, modeled by a reduced Moore-
Greizer equation; and using only pressure as a measured
output.



A&K’01, ctd’
general framework:

ẋ = f(x, z, u)

ż = g(x, z)

only output y = h(x) available for stabilization
z-subsystem (R) is unknown (robust design)

design state-feedback u = k(x) and observer,
producing estimate x̂ such that:

• error e = x− x̂ is ISS(z)
• ẋ = f(x, z, k(x̂)) = F (x, z, e) is ISS(e, z)
• ż = g(x, z) is ISS(x)

 (w/small-gain cond) stab of entire system
49

The authors achieve this objective by viewing the problem
as a robust stabilization one, with the first stall mode as
unknown dynamics.

Their method relies upon a novel observer algorithm, cou-
pled with a state feedback law designed so that three ISS
properties are satisfied:

the estimation error is ISS with respect to the unmodeled
dynamics z; the rest of the state is ISS with respect to the
error and z; and the unmodeled part is ISS with respect to
the rest of the system.

An ISS small gain argument is used to prove that the design
works.



Appl: Chaos Synchronization
Angeli, TAC’02: driven copy of system

��
��

--

?

-

d(t)

noisy channel

u = y yẋ = f(x, y)

y = h(x)
ż = f(z, y+d)

(“master-slave” configuration; secure communications)

states synchronize:

|x(t) − z(t)| ≤ max{β(|x0 − z0|, t) , ‖d‖}
provided that ẋ = f(x, u) is ∆-ISS :

50

The next two applications of ISS are quite nontraditional.

The first concerns synchronization of chaotic systems, a
technique proposed in the context of secure communica-
tions.

It is interesting that ISS ideas may be used in validating
designs.

One wants a copy of the original system, driven by the same
input, plus channel noise, and starting at a different ini-
tial state, to synchronize with the transmitter, provided the
noise is not too large.



Incremental (“∆”) ISS

‖x(t)−z(t)‖ ≤ max{β(|x0−z0|, t), γ1(‖u−v‖}
for any two sols ẋ = f(x, u), ż = f(z, v)

e.g. Lorentz attractor:

ẋ1 = −βx1 + sat(x2)sat(x3)

ẋ2 = σ(x3 − x2)

ẋ3 = −x3 + u

y = ρx2 − x1x2

where β = 8/3, σ = 10, ρ = 28
(saturation here for technical reasons - does not affect application)

cascade of ∆-ISS ⇒ ∆-ISS, so OK!

51

One can state this objective as one of incremental ISS,
and the preservation of incremental ISS under cascades
shows easily that, for example, the Lorentz chaotic attrac-
tor works.



e.g.: z1 tracks x1

52

The second systems tracks even though the signals are chaotic.



IOSS in Pipe Flow Mixing

Aamo & Krstic, Springer, 2002:
want: de stabilize flow (to enhance mixing)

input = wall velocity(position,time)
blowing/suction actuators distributed on wall

output = pressure differences across pipe

output feedback , based on IOSS estimates
(Navier-Stokes eqn. IMES to turbulent kinetic energy & dissipation)

53

The last example is also very nontraditional: it involves
destabilization rather than stabilization, in the context of
mixing of fluids in a pipe.

A central role is played by IOSS “detectability type” esti-
mates, using as inputs the wall velocities, and as outputs,
certain pressure differences.



Results

54

Here are cross-section, and longitudinal pictures showing
the enhancement of mixing under the designed control laws.

Of course, the authors did far more than just checking ISS
properties, but IOSS helped them formulate goals and or-
ganize thoughts.



Summary of ISS part

�natural blend of Lyapunov & I/O

� suitable for analyzing interconnections
and as basis for recursive design

�many equivalent characterizations

� elegant connections to detectability, etc

� rich mathematical theory

�many open problems remain
incl extend to broader systems classes

�applications: see wide literature

55

Before I turn to biology, let me summarize the ISS part of
the talk.

I argued that ISS is a natural blend of Lyapunov and in-
put/output notions, suitable for the stability analysis of in-
terconnected systems;

that it can be characterized in many very different manners,
through dissipation, stability margins, and so on,

and that other systems theoretic notions, such as detectabil-
ity, can be formulated in an similar fashion, leading to an
elegant and consistent theory.

The theory, although deep and well-developed, is far from
complete, and many exciting open problems remain.

I have not talked about applications in any serious way;

many in the audience, are far better qualified than me to
describe applications, and I refer you to their lectures and
papers.
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I would like to say a few words now about Systems Molec-
ular Biology, a subject which, I believe, may become one
of the most important areas of application for systems and
control ideas.



Systems Molecular Biology
• source of theory questions [similar, but 6= !]

fascinating “playground”

for control theory (including ISS )

• huge potential societal impact

• scientific knowledge

• pharmaceutical research

• gene therapies

• engineered “viruses”

57

The field raises a tremendous number of exciting theoretical
questions, and in that sense, it is a great “playground”;

but more importantly, of course, our contributions as a com-
munity have the potential to have a major impact upon so-
ciety, adding to scientific knowledge, drug design, and gene
therapies.



e.g. System: Cancer Network

The hallmarks of cancer, Hanahan & Weinberg, Cell 2000
58

This picture, from a well-known paper in cancer research,

shows the network inside cells which is responsible for the
control of cell division.

The breakdown of this control system leads to cancer.

The arrows indicate chemical interconnections through which
the cell carries out its information processing tasks.

Let me zoom-in so you can see better.



Inputs → Gene Expression

59

The inputs to the system are external signals such as growth
factors, hormones, and various other chemicals.

The outputs are chemical signals to other cells as well as
signals to the reproduction machinery inside the cell.

Of course, much of the system has not been identified yet:
there are surely other, so far unknown, components, and the
numerical values of most parameters are only known very
approximately.

However, data is being collected at an amazing rate, and
better and better models are being constantly obtained.

As a systems theorist, one cannot help but to be fascinated
by all this.



Many Challenging Questions

� information-processing (i/o)?

� signal transduction pathways?

� reverse engineering (inverse problem)
• parameters (reaction constants)?

• protein expression levels (state ∈ R100,000)?

�what “modules” appear repeatedly?

�why cascades and feedback loops?

�dynamical properties?
• stability, oscillations, . . .

�how to control using external inputs?
60

Moreover, the questions that we would normally ask are
precisely those that the best biologists are asking:

what type of information processing is being carried out?

how do the different signal transduction pathways interact?

how do we identify system parameters?

if we know parameters, how do we estimate internal states?

(which, for an entire cell, might involve knowing the con-
centrations of thousands of proteins, as a function of time)

what subsystems appear repeatedly?

what is the reason that there are cascades and feedback
loops?

more generally, what can one say, if anything, about sta-
bility and other dynamical properties of such complex sys-
tems?

and finally, how can we control cellular systems?



Systems Theorists’ Heaven
decomposition questions central

and recognized as such

(buzzword: “modules”)

61

It is amazing that one of the buzzwords in current molecu-
lar biology is the word module, which may be understood
as subsystem :

biologists are attempting to understand cell behavior as
arising from an interconnection of common subsystems which
perform standarized tasks.



Q’s Similar but 6= Engineering!
e.g.:

• identify “network graph”
from steady state data [DNA chips, etc]
(or a very small # time samples)

Kholodenko et.al.-EDS, PNAS’02

• limited freedom in inputs for identification
(e.g. step responses only)

EDS, J. Nonlinear Science’02

next: a couple of e.g.’s in more detail

62

Having said all this, one of the messages that I’d like to
leave you with is that, while the questions that biologists
ask sound like those that we are accustomed to,

technically, in my experience, they end up being very dif-
ferent than those that are common in many areas of engi-
neering.

I have been looking at a number of such questions,

dealing with issues such as systems identification based on
small amounts of steady-state data;

or the fact that, typically, one cannot apply rich enough
inputs to a cell for identification purposes.
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For the rest of this talk, let me describe a couple of “short
stories” that illustrate this point.



Zoom-in Cancer Net

64

This is part of the cancer network that I showed earlier.



Zoom More: MAPK Cascades

65

Let me zoom in even more, and draw your attention to the
middle of this slide.

These reactions are an example of a mitogen activated pro-
tein kinase or “MAPK” cascade.



MAPK 3-Level Cascades
mitogen-activated protein kinase cascades
ubiquitous “signaling “submodule” in eukaryotes

66

These are always cascades of three subsystems, each one
driving the next one through a phosphorylation reaction;

they appear everywhere, with apparently minor variations,
and have a role in the most important cellular processes.



Even: Role in Anthrax

Lethal Factor (LF) is a toxin secreted by Bacillus anthracis. It is a highly specific protease that cleaves members of a
MAPKK near their amino-termini, removing the docking sequence for the down-stream cognate MAP kinase

67

It was even discovered that anthrax attacks by breaking the
communication link between the second and third subsys-
tem in this cascade.



Example: 2-3-3 cascade
dx1

dt
=

v2 x2

k2 + x2
−

g1 u

(k1 + x1)
dx2

dt
=

g1 u

(k1 + x1)
−

v2 x2

k2 + x2
dy1

dt
=

v6 y2

k6 + y2
−
κ3 x2 y1

k3 + y1
dy2

dt
=
κ3 x2 y1

k3 + y1
+

v5 y3

k5 + y3
−
κ4 x2 y2

k4 + y2
−

v6 y2

k6 + y2
dy3

dt
=
κ4 x2 y2

k4 + y2
−

v5 y3

k5 + y3
dz1

dt
=

v10 z2

k10 + z2
−
κ7 y3 z1

k7 + z1
dz2

dt
=
κ7 y3 z1

k7 + z1
+

v9 z3

k9 + z3
−
κ8 y3 z2

k8 + z2
−

v10 z2

k10 + z2
dz3

dt
=
κ8 y3 z2

k8 + z2
−

v9 z3

k9 + z3
68

This is a typical set of equations, taken from the literature,
describing a cascade with systems of dimensions 2,3,3 re-
spectively.



Oscillations

?

?

?

?

phosphorylation

phosphorylation

output

input

subsystem 1

subsystem 3

subsystem 2

� −
Kholodenko, Europ.J.Biochem.’00:

inhibitory feedback (to turn-off response?)

may induce oscillations (Hopf)

if too strong . . . but how strong?

obvious approach: small-gain

ask “loop gain
�

less than 1”

but gain in what sense?

in biology, equilibrium location
may depend on feedback gain!

e.g.: ẋ = −x+ 4
3+x

⇒ equil moves x = 0  1
69

Let me show one example of a question about MAPK cas-
cades which led to some interesting new control theory.

There is some evidence that inhibitory feedback loops from
the bottom level of the cascade to the top play a role in
“turning off” a response after a signal has been transmitted
(keeping a signal “on” is too expensive, metabolically).

Simulations published in the biochemical literature showed
Hopf bifurcations for large negative gains.

It is thus an interesting question to try to predict for what
ranges of feedback gains there are no oscillations.

As control theorists, we immediately think “small gain the-
orem” but, as far as I could see, no classical version applies
in this case.

One of the complications is that the magnitude of the gain
affects the location of the steady state, a situation which is
typical in biological feedback.



 New Control Theory Q’s
• “Cauchy gains” theory developed to provide

tight estimates of Hopf bifurcations

[EDS, SCL’02 & CDC’02]

• “monotone control systems” theory
and rich SGT’s (“ISS with order”)

[Angeli-EDS, CDC’02 & submitted to TAC]

• also: “+”feedback, hysteresis, multi-stability
ISS-like properties of open loop subsystems
⇒ global convergence to some equilibrium

[Angeli-EDS, in preparation]
70

In any event, studying this problem led to the development
of a new type of “gain” for nonlinear systems, related to,
but quite different from, both classical and ISS gains.

One gets a tight estimate of gains that don’t produce oscil-
lations;

and further research into biochemical models of MAPK cas-
cades, gave rise to yet another theoretical development, this
one concerning an ISS property on ordered spaces,

including an extension to the characterization of hystere-
sis and multi-stable behavior, which play a central role in
molecular biology.



Bi-Stable Behavior

(Pomerening & Ferrell, 2002, unpublished)
71

Bistable phenomena are not at all a purely mathematical
game; these experimental results show bistable behavior in
cdc2-cyclin B activity in mitosis.

We see the hysteresis in MAPK and other enzymes, when
inputs change up or down,

and the effect is evident both in the Western blot that
measures protein phosphorylation, and in microscope pho-
tographs of the nucleii of cells undergoing cell cycle.
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I want to emphasize that really exciting new theoretical
questions appear as soon as one looks into such problems.

Hopefully, the theory will be useful to biologists.

But, if nothing else, molecular biology in the 21st century
may well play the role that physics played in the last two
centuries, in generating new mathematics.

The second “short story” that I want to tell, concerns the
movements of E-coli bacteria.



The bacteria that make you sick if you eat under-cooked
hamburgers.



E.coli Chemotaxis
E.coli moves (taxis), propelled by flagella,
in response to chemical attractants/repellents

- -signaling systemsense nutrient signal motors

Berg: typical cell has up to six flagella and hundreds of porins (channels for nutrients); cell body is 2 µm long
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E-coli bacteria move in response to chemical gradients, to-
wards food and away from poisons.

They have a subsystem which is resposible for detecting
nutrients and signaling motors to turn propellers.



Motor: Micrograph, Diagram

engines, propellers, particle counters, rate meters, gear boxes
“a nanotechnologist’s dream” (Berg, Physics Today, 2000)
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The motors are marvels of nanotechnology: to the left is
an actual photograph of a motor, and to the right a parts
diagram.



- -signaling systemnutrient level signal to motors

• transient signal (“run toward food”)
issued in response to a change in concentration

• but then adapt, stop running

(actually, opposite: tumble/random gradient search)

behavior consistent with regulation with respect to
constant signals (chemical gradient) plus nontrivial I/O

indeed, experimental measurements of impulse-response
(local, small amplitude, wrt default tumbling signal)
fit perfectly to transfer function having a zero at s = 0

further, integral of i/r fit is itself fit perfectly by data:
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There are many questions for control theory, but let’s men-
tion just one:

E-coli detects gradients rather than absolute concentrations:
it runs towards food if there is a change in concentration but
when the concentration does not change, it stops

(actually, there is a far more complicated stochastic search
algorithm going on, but let me skip the details).

So there is regulation against constant signals.



Zero DC Gain

impulse response (population avg), Segall, Block, Berg, PNAS 1986
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There have been measurements of the impulse response,
and indeed, for small signals, one checks that the system
has zero DC gain.



Step Response, Indeed
∫

step response (population avg), Segall, Block, Berg, PNAS 1986
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Fitting and then integrating gives the same as the experi-
mental step response, which is amazing if you think of the
complicated biology going on.



Internal Model Principle
if system Σ regulates w.r.t. all inputs u(·) ∈ U
(U = some predetermined class, e.g. constants)
then Σ must contain an IM generating U
Wonham, Francis, Hepburn: if robust
(structurally stable; center manifold techniques)

Bio IMP Technically 6= Usual

small overshoot desirable in engineering
— e.g. cruise-control, active suspension

but here want to detect sudden change in u(·)
∴ desirable theorem:

signal detect & adapt ⇒ internal model
79

This suggests, by the Internal Model Principle, that there
should be some sort of integrator inside the system.

In contrast to standard disturbance rejection, however, one
wants a large transient, that allows signal detection before
adaptation kicks in (sort of a mixture of fault detection and
regulation).

This is quite different from, say, active suspension design –
we would not want passengers in a car to hit the roof as
hard as possible before the car adapts to a bump in the
road!

One is led to an internal model theorem which is different in
spirit to the classical ones of Francis and coauthors (which
assume robustness instead of signal detection).

Again, I wish to emphasize the point that a problem which
is very similar to a classical one, on closer inspection differs
in subtle ways from the analogous engineering problem, and
new concepts and results need to be developed.



One Theorem (EDS’02, to appear)

- -Σ e(t) → 0u(·) ∈ U

⇒ decomposition:

�

-

-

-

e(t) → 0u(·) ∈ U

Σ

Σ0

Σim

where the subsystem Σim is driven by the “error” y(·) − y∗

and can generate all possible “disturbances” u(·) ∈ U
80

One simple theorem along those lines states that if a system
regulates against all disturbances generated by an exosys-
tem, and if a relative degree condition holds, which models
the “signal detection” property,

then there is a decomposition of the system which exhibits
a subsystem that is driven by errors and which is capable
of generating all the possible exosystem signals.



More Precisely:
suppose ẋ(t) = f(x(t)) + u(t)g(x(t)) , y(t) = h(x(t))
adapts to U = generated by Poisson-stable exosystem
f & g smooth vf’s; h smooth Rn → R, f(0)= h(0) = 0

assume finite uniform relative degree:

(∃ r) LgL
k
fh ≡ 0 ∀ k < r−1, LgL

r−1
f h(x) 6= 0 ∀x ∈ Rn

and vf’s τi := adi−1

f̃
g̃, complete and pairwise commutative

g̃(x) =
1

LgL
r−1
f h(x)

g(x), f̃(x) = f(x) −
(
Lrfh(x)

)
g̃(x),

(linear systems: ≡ nonzero transfer function)

then ∃ diffeomorphism  

ż1 = f1(z1, z2) + ug1(z1, z2) , y = κ(z1)

ż2 = f2(y, z2)

and ∃ smooth scalar ϕ(z2) s.t., ∀ u ∈ U , ∃ solution of

ż2 = f2(0, z2) s.t. ϕ(z2(t)) ≡ u(t)
81

The precise statement involves a Poisson stability assump-
tion on the exosystem and a decomposition based on center
manifold types of techniques.



Internal Model (Integrator)

Yi/Huang/Simon/Doyle
(PNAS 2000):

IMP ⇒ integral feedback
in molecular mechanism of
Barkai&Leibler, Nature 1997

(also: Iglesias & Levchenko,
CDC 2001)
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Integrators have been found, indeed, in the subsystem re-
sponsible for E-coli chemotaxis and a specific methylation
reaction has been interpreted as playing the role of integra-
tor.
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In the last few minutes, let me tell you quickly why I believe
that the field may be ripe for a quantitative study.



Enabling Technologies

• bioinformatics: genomics & proteomics

• measurement tools, e.g. genechips, GFP

• system perturbations, e.g. mutations
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Besides the advances in decoding the genome, which pro-
vides a “parts list” for life,

and the ongoing work on finding what these parts look like,
that is to say, finding the shapes of proteins,

several other technological advances make quantitative mod-
eling possible.

One is the advent of sophisticated methods for measuring
what is going on inside a cell,

and another is the development of techniques for performing
system perturbations.



E.g. of Measurement Tools
scalar outputs: Green Fluorescent Protein

GFP gene inserted adjacent to
gene coding for protein to be measured

genes are expressed simultaneously,
measure intensity of the GFP light emitted
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One example of measurement tool is the use of green fluo-
rescent protein .

A mutation inserts a GFP gene next to the gene of interest,
so that both are expressed simultaneously;

the quantity being produced of the protein of interest cor-
relates with the total amount of light emitted by GFP.



Gene Chips
vector output measurement:
snapshot of current state of system
activity levels of many [all] genes

86

Gene chips, or DNA microarrays, are a technique which
gives a snapshot of overall gene expression and provides a
read-out of thousands of genes simultaneously.



E.g. of System Perturbations
one can use genetic engineering in order to

experimentally answer if, at the molecular level,

cells employ neg feedback to reduce uncertainty

-

�

- -

plant

controller

errordisturbance

higher feedback gain ⇒ smaller (ISS, etc) gain?
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Not only can one attach sensors, so to speak, but genetic
engineering can help study the effect of feedback loops.

A recent paper in the molecular biology literature dealt with
the use of negative feedback in uncertainty reduction.

Specifically, the authors asked if a higher feedback gain re-
sulted in better disturbance attenuation.

Let me describe the experiment, to give you an idea of what
is becoming possible in this area.



Becskei and Serrano, Engineering Stability in Gene Networks by Autoregulation, Nature 2000

in E.coli, about 40% of transcription factors self-regulate

TetR, or tetracycline repressor protein, defends E.coli against
tetracycline, and is a major source of antibiotic resistance

TetR regulates its own formation through a feedback loop

?

promoter TetR+GFP gene

-
E.coli DNA

-
d(t)

protein level measured by splicing GFP gene to gene coding for TetR

experiment: “loop gain” ↘ by mutations/replace operator
(feedback loop partially or almost totally disabled)

lower “gain” ⇒ more variability in protein expression
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In E-coli bacteria, about 40% of transcription factors regu-
late themselves.

TetR, or tetracycline repressor protein, defends E-coli against
tetracycline, and is a major source of antibiotic resistance.

TetR tightly regulates its own level through a negative feed-
back loop.

An experiment showed that lowering the gain results in
more variability.



Experimental results
normal less feedback no feedback

number of cells measured against fluorescence levels

“negative feedback” in biology typically not additive “x−ke”(!)

but rather inhibition: multiplication by small factor
(

1
1+ke

)
x
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In these three plots, the first one is of normal expression
levels, while the second and third show a higher variance
due to lower feedback gain.

The feedback was changed by mutations which blocked reg-
ulation. These types of experiments, although still expensive
and nontrivial, are becoming commonplace in molecular bi-
ology research.
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let me make a couple of closing remarks about systems bi-
ology and systems and control theory.



On Sysbio & Math/Control
feedback control deals, in principle, with issues
central to postgenomic (systems) molecular bio

avoid “pseudo-exactness”: relevant values
(rate constants, concentrations)

may vary over orders of magnitude: require

robustness to large parameter variations

expect principles of feedback theory
useful in guiding experimental work

other parts (e.g. identification, observers):
role in experimental design, instrumentation

also: extremely interesting research areas in
mathematics arise studying these problems
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There is no question that our field deals with the fundamen-
tal issues of postgenomic, or “systems” molecular biology.

But it is not going to be easy: a unique aspect of life, is
that it performs well under a tremendous amount of un-
certainty, far more than allowed by our favorite robust-
ness/identification tools.

The precision and optimality results that we are accustomed
to, have to be extended to allow for large of parameter vari-
ations.

Still, theoretical principles will help guide and interpret ex-
periments, while other parts of our field play a central role
in instrumentation, and new and challenging open problems
will arise for us theoreticians.
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