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Drift counteraction optimal control

• Large disturbances and/or dynamics 

causing drift

• State constraints

• Control constraints / constrained resources 

limiting ability to counteract drift

• Eventual constraint violation is inevitable

• Goal: Maximize time (or yield) till constraint 

violation occurs

• No set-points, only constraints!
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Deterministic DCOC
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GEO satellite station keeping
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LEO satellite orbit decay reduction
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Stochastic DCOC
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Glider range maximization
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Related work

• There has been much work on exit-time/optimal stopping problems for both 

stochastic and deterministic continuous-time systems

Lions (1983), Fleming and Soner (2006), Barles and Rouy (1998), Bayraktar et. al. (2010), 

Gorodetsky et al. (2015), Buchdahn and Nie (2016), Kushner and Dupuis (2013), Barles

and Perthane (1998), Blanc (1997), Cannarsa et al. (2000), Munos and Moore (2002), 

Rungger and Stursberg (2011), …

• There has been less work on discrete-time systems

• Much of previous work relied on different assumptions: discounted problems, 

minimizing non-negative cost, instead of maximizing non-negative cost, etc.

• Our focus is on computational improvements to dynamic programming, MPC 

formulations, and applications
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Deterministic DCOC
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Exit time boundness assumption
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Dynamic programming solution 
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Computations
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Adaptive proportional value iteration
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Modified value iteration algorithm



DRIFT COUNTERACTION 

OPTIMAL CONTROL FOR 

AEROSPACE SYSTEMS

15

Case
Comp. time

(C, desktop pc) 𝜏(𝑥0, 𝜋
∗)

new (nominal) 31 min 116,650

VI (nominal) 16 min 90,967

new (dense) 18.5 hours 116,596

VI (dense) 18 hours 112,356

GEO North-South (out of orbital plane) station keeping
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Handling larger dimensional problems
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Model Predictive Control (MPC)

MPC Plant

MPC is a feedback law defined by the first element of the optimal control        

sequence obtained as a solution to a constrained optimal control problem
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Nonlinear and linear programming approaches
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Mixed integer nonlinear program (MINLP)
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NLP formulation

optimal
NLP



DRIFT COUNTERACTION 

OPTIMAL CONTROL FOR 

AEROSPACE SYSTEMS

21

Reduction to LP

• Linear model approximation:

• MILP (similar to MINLP) solves linear DCOC problem

• Approximate solution with LP

Iterative Procedure: Increase 

horizon 𝑁 until constraint violation
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MPC strategy
C
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Linear model prediction
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Premature violation

LP solution (open-loop) Constraints

Tightened constraints
LP solution (open-loop)

LP-based MPC simulated on nonlinear model, including recovery controller

LP-based MPC simulated on nonlinear model

Recovery control
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Method – Sim. Model Exit-Time (min) Computation Time, MATLAB (sec)

MPC - Discrete-Time 1.5 0.01 (average), 0.08 (worst-case)

NLP - Discrete-Time 1.5 50

MPC - Continuous-Time 1.46 0.01 (average), 0.08 (worst-case)

Spacecraft pointing control with a single reaction wheel
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Stochastic DCOC based on linear models
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Solution existence
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DP solution 
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Scenario tree
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Scenario tree
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Scenario tree generation
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Scenario tree – based optimization

*
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MILP formulation 
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MILP formulation 
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Stochastic MPC (SMPC) implementation 
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SMPC implementation 
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Second order example with disturbance
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Average computation time (per single 

time instant) vs number of tree nodes

• Results for 1,000 random trajectories (samples)

• Hybrid Toolbox in MATLAB 2015a on Laptop

• Computation time limit for MILP:

Average exit time vs 

number of tree nodes

DP solution for 60x60x250 grid: 32.41 sec, offline computation time: 1.63 hours (in C)

❶

❶

Second order example with disturbance  
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Average computation time (per single 

time instant) vs number of tree nodes

Worst-case computation time (per single 

time instant) vs number of tree nodes

Second order example with disturbance  
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Minimum-time MPC problem
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MILP reformulation of minimum-time MPC

EECI–GIS-M22-L10.2-AttitudeControl
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MILP reformulation of minimum-time MPC problem

• The matrices 𝐻, ℎ define the polyhedral target set 𝐶, 𝑀 is a large parameter, 𝟏𝑛ℎ, is 

a vector of ones, and 𝛿𝑘 is a binary decision variable used to relax the inequality 
constraint.

• If 𝛿𝑘 = 0, then the state lies inside the target set, 𝐶.

• If the state falls outside the target set, then 𝛿𝑘 = 1.

• The additional constraint 𝛿𝑘+1 ≤ 𝛿𝑘 ensures that once 𝐶 is reached, the trajectory 
remains there for all future times.  

• The control constraints are Γ𝑢𝑘 ≤ 𝛾

• 𝜏𝑙𝑏(𝑥0) is a lower bound on the time-to-go

• The minimum-time problem reduces to a Mixed-Integer Linear Program (MILP) and 
can be solved using standard numerical algorithms.  Matlab: use intlinprog.m

EECI–GIS-M22-L10.2-AttitudeControl
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MILP not requiring target set control invariance

EECI–GIS-M22-L10.2-AttitudeControl
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Flexible spacecraft EOMs
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Simulation results
•In the simulation results, the controller is able to maintain the constraints on the flexible modes while 
executing the attitude change maneuver in minimum-time

EECI–GIS-M22-L10.2-AttitudeControl
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Simulation results

EECI–GIS-M22-L10.2-AttitudeControl
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Exclusion Zone Avoidance
• The minimum-time MILP formulation can be augmented with additional binary 

parameters, 𝜖, to represent exclusion zones.

• As an example, consider a rectangular exclusion zone for Euler angles, 𝜙, 𝜃, 𝜓.
For 𝑀 > 0 sufficiently large, the following inequality constraints can be added to 
MILP:

EECI–GIS-M22-L10.2-AttitudeControl
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Simulation results: Maneuvering rigid spacecraft with 

orientation exclusion zones
• The control moments are limited to +/- 0.1 Nm and random unmeasured disturbance torques 

sampled from the uniform distribution over the interval [-0.01, 0.01]
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Summary
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BACKUP
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Deterministic DCOC (alternative formulation)


