
DEFINING INTELLIGENT CONTROL

Report of the Task Force on Intelligent Control
IEEE Control Systems Society

Panos Antsaklis, Chair

December 1993

1 INTRODUCTION

In May 1993, a task force was created at the invitation of the Technical Com-
mittee on Intelligent Control of the IEEE Control Systems Society to look into the
area of Intelligent Control and de�ne what is meant by the term. Its �ndings are
aimed mainly towards serving the needs of the Control Systems Society; hence the
task force has not attempted to address the issue of intelligence in its generality,
but instead has concentrated on deriving working characterizations of Intelligent
Control. Many of the �ndings however may apply to other disciplines as well.

The charge to the task force was to characterize intelligent control systems, to
be able to recognize them and distinguish them from conventional control systems;
to clarify the role of control in intelligent systems; and to help identify problems
where intelligent control methods appear to be the only viable avenues.

In accomplishing these goals, the emphasis was on working de�nitions and useful
characterizations rather than aphorisms. It was accepted early on that more than
one de�nition of intelligent systems may be necessary, depending on the view taken
and the problems addressed.

In the remaining of this introduction, the di�erent parts of this report are de-
scribed and the process that led to this document is outlined. But �rst, a brief
introduction to the types of control problems the area of intelligent control is ad-
dressing is given and the relation between conventional and intelligent control is
clari�ed.

1.1 Conventional and Intelligent Control

The term "conventional (or traditional) control" is used here to refer to the
theories and methods that were developed in the past decades to control dynamical
systems, the behaviour of which is primarily described by di�erential and di�erence
equations. Note that this mathematical framework may not be general enough
in certain cases. In fact it is well known that there are control problems that
cannot be adequately described in a di�erential/di�erence equations framework.
Examples include discrete event manufacturing and communication systems, the
study of which has led to the use of automata and queuing theories in the control
of systems.

In the minds of many people, particularly outside the control area, the term
"intelligent control" has come to mean some form of control using fuzzy and/or
neural network methodologies. This perception has been reinforced by a number
of articles and interviews mainly in the nonscienti�c literature. However intelligent
control does not restrict itself only to those methodologies. In fact, according to
some de�nitions of intelligent control (section 2) not all neural/fuzzy controllers
would be considered intelligent. The fact is that there are problems of control which
cannot be formulated and studied in the conventional di�erential/di�erence equation
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mathematical framework. To address these problems in a systematic way, a number
of methods have been developed that are collectively known as intelligent control
methodologies.

There are signi�cant di�erences between conventional and intelligent control
and some of them are described below. Certain of the issues brought forward in
this introduction are discussed in more detail in section 3 of this report. It is worth
remembering at this point that intelligent control uses conventional control methods
to solve "lower level" control problems and that conventional control is included in
the area of intelligent control. Intelligent control attempts to build upon and enhance
the conventional control methodologies to solve new challenging control problems.

The word control in "intelligent control" has di�erent, more general meaning
than the word control in "conventional control". First, the processes of interest are
more general and may be described, for example by either discrete event system
models or di�erential/di�erence equation models or both. This has led to the devel-
opment of theories for hybrid control systems, that study the control of continuous-
state dynamic processes by discrete-state sequential machines. In addition to the
more general processes considered in intelligent control, the control objectives can
also be more general. For example, "replace part A in satellite" can be the gen-
eral task for the controller of a space robot arm; this is then decomposed into a
number of subtasks, several of which may include for instance "follow a particular
trajectory", which may be a problem that can be solved by conventional control
methodologies. To attain such control goals for complex systems over a period of
time, the controller has to cope with signi�cant uncertainty that �xed feedback ro-
bust controllers or adaptive controllers cannot deal with. Since the goals are to be
attained under large uncertainty, fault diagnosis and control recon�guration, adap-
tation and learning are important considerations in intelligent controllers. It is also
clear that task planning is an important area in intelligent control design. So the
control problem in intelligent control is an enhanced version of the problem in con-
ventional control. It is much more ambitious and general. It is not surprising then
that these increased control demands require methods that are not typically used
in conventional control. The area of intelligent control is in fact interdisciplinary,
and it attempts to combine and extend theories and methods from areas such as
control, computer science and operations research to attain demanding control goals
in complex systems.

Note that the theories and methodologies from the areas of operations research
and computer science cannot, in general be used directly to solve control problems,
as they were developed to address di�erent needs; they must �rst be enhanced
and new methodologies need to be developed in combination with conventional
control methodologies, before controllers for very complex dynamical systems can
be designed in systematic ways. Also traditional control concepts such as stability
may have to be rede�ned when, for example, the process to be controlled is described
by discrete event system models; and this issue is being addressed in the literature.
Concepts such as reachability and deadlock developed in operations research and
computer science are useful in intelligent control, when studying planning systems.
Rigorous mathematical frameworks, based for example on predicate calculus are
being used to study such questions. However, in order to address control issues,
these mathematical frameworks may not be convenient and they must be enhanced
or new ones must be developed to appropriately address these problems. This is
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not surprising as the techniques from computer science and operations research
are primarily analysis tools developed for nondynamic systems, while in control,
synthesis techniques to design real-time feedback control laws for dynamic systems
are mainly of interest. In view of this discussion, it should be clear that intelligent
control research, which is mainly driven by applications has a very important and
challenging theoretical component. Signi�cant theoretical strides must be made
to address the open questions and control theorists are invited to address these
problems. The problems are nontrivial, but the pay-o� is very high indeed.

As it was mentioned above, the word control in intelligent control has a more
general meaning than in conventional control; in fact it is closer to the way the term
control is used in every day language. Because intelligent control addresses more
general control problems that also include the problems addressed by conventional
control, it is rather di�cult to come up with meaningful bench mark examples.
Intelligent control can address control problems that cannot be formulated in the
language of conventional control. To illustrate, in a rolling steel mill, for example,
while conventional controllers may include the speed (rpm) regulators of the steel
rollers, in the intelligent control framework one may include in addition, fault diag-
nosis and alarm systems; and perhaps the problem of deciding on the set points of
the regulators, that are based on the sequence of orders processed, selected based on
economic decisions, maintenance schedules, availability of machines etc. All these
factors have to be considered as they play a role in controlling the whole production
process which is really the overall goal. These issues are discussed in more detail in
section 3.

Another di�erence between intelligent and conventional control is in the sepa-
ration between controller and the system to be controlled. In conventional control
the system to be controlled, called the plant, typically is separate and distinct from
the controller. The controller is designed by the control designer, while the plant is
in general given and cannot be changed; note that recently attempts to coordinate
system design and control have been reported in areas such as space structures and
chemical processes, as many times certain design changes lead to systems that are
much easier to control. In intelligent control problems there may not be a clear
separation of the plant and the controller; the control laws may be imbedded and
be part of the system to be controlled. This opens new opportunities and challenges
as it may be possible to a�ect the design of processes in a more systematic way.

Research areas relevant to intelligent control, in addition to conventional control
include areas such as planning, learning, search algorithms, hybrid systems, fault
diagnosis and recon�guration, automata, Petri nets, neural nets and fuzzy logic.
In addition, in order to control complex systems, one has to deal e�ectively with
the computational complexity issue; this has been in the periphery of the interests
of the researchers in conventional control, but now it is clear that computational
complexity is a central issue, whenever one attempts to control complex systems.

It is appropriate at this point to briey comment on the meaning of the word
intelligent in "intelligent control". Note that the precise de�nition of "intelligence"
has been eluding mankind for thousands of years. More recently, this issue has been
addressed by disciplines such as psychology, philosophy, biology and of course by
arti�cial intelligence (AI); note that AI is de�ned to be the study of mental faculties
through the use of computational models. No consensus has emerged as yet of what
constitutes intelligence. The controversy surrounding the widely used IQ tests also
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points to the fact that we are well away from having understood these issues. In this
report we do not even attempt to give general de�nitions of intelligence. Instead we
introduce and discuss several characterizations of intelligent systems that appear
to be useful when attempting to address some of the complex control problems
mentioned above.

Some comments on the term "intelligent control" are now in order. Intelligent
controllers are envisioned emulating human mental faculties such as adaptation and
learning, planning under large uncertainty, coping with large amounts of data etc
in order to e�ectively control complex processes; and this is the justi�cation for
the use of the term intelligent in intelligent control, since these mental faculties are
considered to be important attributes of human intelligence. Certainly the term
intelligent control has been abused and misused in recent years by some, and this is
of course unfortunate. Note however that this is not the �rst time, nor the last that
terminology is used to serve one's purpose. Intelligent control is certainly a catchy
term and it is used (and misused) with the same or greater abundance by some, as for
example the term optimal has been used (or misused) by others; of course some of the
most serious o�enses involve the word "democracy"! For better or worse, the term
intelligent control is used by many. An alternative term is "autonomous (intelligent)
control". It emphasizes the fact that an intelligent controller typically aims to attain
higher degrees of autonomy in accomplishing and even setting control goals, rather
than stressing the (intelligent) methodology that achieves those goals; autonomous
control is also discussed in sections 2 and 3. On the other hand, "intelligent control"
is only a name that appears to be useful today. In the same way the "modern
control" of the 60's has now become "conventional (or traditional) control", as it
has become part of the mainstream, what is called intelligent control today may be
called just "control" in the not so distant future. What is more important than the
terminology used are the concepts and the methodology, and whether or not the
control area and intelligent control will be able to meet the ever increasing control
needs of our technological society. This is the true challenge.

I would like to �nish this brief outline with an optimistic note; and there are
many reasons for being optimistic. This is an excellent time indeed to be in the
control area. We are currently expanding our horizons, we are setting ambitious
goals, opening new vistas, introducing new challenges and we are having a glimpse
of the future that looks exciting and very promising.

1.2 Points of View

The list of the task force members can be found at the end of this report. This
report represents a collective view of what intelligent control is and what are its main
characteristics or dimensions. As usually happens, some of the members have had
greater input to the process than others. Independently of the amount of individual
contributions, however, it is fair to say that no member of the committee objects to
the main points made in this report. In addition, in the second part of this report in
section 3, task force members further explain and give reference to their own points
of view and this gives an opportunity for further reading into the subject. Some
additional references are also given.
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1.3 The Process

Before I outline the di�erent parts of this report, let me say a few words about
the procedure that led to its �nal version. After the task force was formed in May,
a position paper representing a particular point of view was aired to "get the ball
rolling". It certainly achieved that! Views were exchanged over email and animated
discussions were conducted o� and on during the whole summer. A �rst outline of
this report was sent to all members in late July. It tried to capture the main points
of view and to establish a desirable format for the report. At the end of August
a meeting took place at the 1993 International Symposium on Intelligent Control
in Chicago, and several task force members and non- members exchanged views
on the subject. It became apparent at that meeting that consensus was emerging.
Participants of that meeting sent their comments in writing to all the task force
members in September; a draft of this �nal report was put together in October,
with the �nal version being prepared in November and December 1993.

1.4 Report Outline

This report consists of twomain parts. The �rst part, in section 2, has the form of
an executive summary and the second part in section 3 contains additional material
and some references. Speci�cally, in section 2 de�nitions of intelligent systems and
of degrees of intelligence are given, and the role of control in intelligent systems is
explained. The di�erent characteristics or dimensions of intelligent systems such as
autonomy, learning and hierarchies are then discussed. Section 3 contains edited
versions of some of the email exchanges and additional comments by the task force
members, together with some references for further reading. They were included
in an attempt to further clarify the issues brought forward in the �rst part of this
report. They are meant to supplement the material in section 2 and to provide some
guidance and references in exploring the area of Intelligent Control.

As the chair of the Task Force on Intelligent Control I had the role of coordi-
nating the discussions and exchanges of the di�erent points of view. I also drafted
this report, which was then �nalized with the help of the members of the task force,
whom I would like to thank for their contributions and insights. I used my own
judgement in selecting the format, the particular form of de�nitions, and in empha-
sizing particular aspects and characteristics of intelligent systems; and any errors
are entirely mine. My aim was to extract the main points out of lengthy email ex-
changes and to write a report that represents the collective view of the Task Force
on Intelligent Control. I hope that this report will be useful to the members of the
Control Systems Society, that it will help identify and clarify the main issues in the
area of Intelligent Control Systems, and will provide information and incentives for
further study.

Submitted by
Panos J. Antsaklis
Chair, Task Force on Intelligent Control
IEEE Control Systems Society
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2 INTELLIGENT CONTROL AND ITS DIMENSIONS

Intelligence and intelligent systems can be characterized in a number of ways and
along a number of dimensions. There are certain attributes of intelligent systems,
common in many de�nitions, that are of particular interest to the control community.
These are emphasized in this report.

In the following, several alternative de�nitions and certain essential characteris-
tics of intelligent systems are �rst discussed. A brief working de�nition of intelligent
systems that captures their common characteristics is then presented. In more
detail, we start with a rather general de�nition of intelligent systems, we discuss
levels of intelligence, we explain the role of control in intelligent systems and outline
several alternative de�nitions. We then discuss adaptation and learning, autonomy
and the necessity for e�cient computational structures in intelligent systems, to deal
with complexity. We conclude with a brief working characterization of intelligent
(control) systems, some examples and a list of important future research directions.

2.1 Intelligent Systems

We start with a general characterization of intelligent systems:
An intelligent system has the ability to act appropriately in an uncertain en-

vironment, where an appropriate action is that which increases the probability of
success, and success is the achievement of behavioral subgoals that support the
system's ultimate goal.

In order for a man-made intelligent system to act appropriately, it may emulate
functions of living creatures and ultimately human mental faculties. An intelligent
system can be characterized along a number of dimensions. There are degrees or lev-
els of intelligence that can be measured along the various dimensions of intelligence.
At a minimum, intelligence requires the ability to sense the environment, to make
decisions and to control action. Higher levels of intelligence may include the ability
to recognize objects and events, to represent knowledge in a world model, and to
reason about and plan for the future. In advanced forms, intelligence provides the
capacity to perceive and understand, to choose wisely, and to act successfully under
a large variety of circumstances so as to survive and prosper in a complex and often
hostile environment. Intelligence can be observed to grow and evolve, both through
growth in computational power and through accumulation of knowledge of how to
sense, decide and act in a complex and changing world.

The above characterization of an intelligent system is rather general. According
to this, a great number of systems can be considered intelligent. In fact, according
to this de�nition even a thermostat may be considered to be an intelligent system,
although of low level of intelligence. It is common however to call a system intelligent
when in fact it has a rather high level of intelligence.

There exist a number of alternative but related de�nitions of intelligent systems
and in the following we mention several. They provide alternative, but related
characterizations of intelligent systems with emphasis on systems with high degrees
of intelligence.

The following de�nition emphasizes the fact that the system in question processes
information, and it focuses on man-made systems and intelligent machines:
A. Machine intelligence is the process of analyzing, organizing and converting data
into knowledge; where (machine) knowledge is de�ned to be the structured infor-
mation acquired and applied to remove ignorance or uncertainty about a speci�c
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task pertaining to the intelligent machine. This de�nition leads to the principle of
increasing precision with decreasing intelligence, which claims that: applying ma-
chine intelligence to a data base generates a ow of knowledge, lending an analytic
form to facilitate modeling of the process.

Next, an intelligent system is characterized by its ability to dynamically assign
subgoals and control actions in an internal or autonomous fashion:
B. Many adaptive or learning control systems can be thought of as designing a
control law to meet well-de�ned control objectives. This activity represents the sys-
tem's attempt to organize or order its "knowledge" of its own dynamical behavior,
so to meet a control objective. The organization of knowledge can be seen as one
important attribute of intelligence. If this organization is done autonomously by
the system, then intelligence becomes a property of the system, rather than of the
system's designer. This implies that systems which autonomously (self)-organize
controllers with respect to an internally realized organizational principle are intelli-
gent control systems.

A procedural characterization of intelligent systems is given next:
C. Intelligence is a property of the system which emerges when the procedures
of focusing attention, combinatorial search, and generalization are applied to the
input information in order to produce the output. One can easily deduce that once
a string of the above procedures is de�ned, the other levels of resolution of the
structure of intelligence are growing as a result of the recursion. Having only one
level structure leads to a rudimentary intelligence that is implicit in the thermostat,
or to a variable-structure sliding mode controller.

2.2 Control and Intelligent Systems

The concepts of intelligence and control are closely related and the term "In-
telligent Control" has a unique and distinguishable meaning. An intelligent system
must de�ne and use goals. Control is then required to move the system to these
goals and to de�ne such goals. Consequently, any intelligent system will be a con-
trol system. Conversely, intelligence is necessary to provide desirable functioning
of systems under changing conditions, and it is necessary to achieve a high degree
of autonomous behavior in a control system. Since control is an essential part of
any intelligent system, the term "Intelligent Control Systems" is sometimes used
in engineering literature instead of "Intelligent Systems" or "Intelligent Machines".
The term "Intelligent Control System" simply stresses the control aspect of the
intelligent system.

Below, one more alternative characterization of intelligent (control) systems is
included. According to this view, a control system consists of data structures or
objects (the plant models and the control goals) and processing units or methods
(the control laws):
D. An intelligent control system is designed so that it can autonomously achieve a
high level goal, while its components, control goals, plant models and control laws
are not completely de�ned, either because they were not known at the design time
or because they changed unexpectedly.

2.3 Characteristics or Dimensions of Intelligent Systems.

There are several essential properties present in di�erent degrees in intelligent
systems. One can perceive them as intelligent system characteristics or dimensions
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along which di�erent degrees or levels of intelligence can be measured. Below we
discuss three such characteristics that appear to be rather fundamental in intelligent
control systems.

Adaptation and Learning

The ability to adapt to changing conditions is necessary in an intelligent system.
Although adaptation does not necessarily require the ability to learn, for systems to
be able to adapt to a wide variety of unexpected changes learning is essential. So
the ability to learn is an important characteristic of (highly) intelligent systems.

Autonomy and Intelligence

Autonomy in setting and achieving goals is an important characteristic of in-
telligent control systems. When a system has the ability to act appropriately in
an uncertain environment for extended periods of time without external interven-
tion it is considered to be highly autonomous. There are degrees of autonomy; an
adaptive control system can be considered as a system of higher autonomy than a
control system with �xed controllers, as it can cope with greater uncertainty than
a �xed feedback controller. Although for low autonomy no intelligence (or "low"
intelligence) is necessary, for high degrees of autonomy, intelligence in the system
(or "high" degrees of intelligence) is essential.

Structures and Hierarchies

In order to cope with complexity, an intelligent system must have an appropriate
functional architecture or structure for e�cient analysis and evaluation of control
strategies. This structure should be "sparse" and it should provide a mechanism
to build levels of abstraction (resolution, granularity) or at least some form of par-
tial ordering so to reduce complexity. An approach to study intelligent machines
involving entropy emphasizes such e�cient computational structures. Hierarchies
(that may be approximate, localized or combined in heterarchies) that are able to
adapt, may serve as primary vehicles for such structures to cope with complexity.
The term "hierarchies" refers to functional hierarchies, or hierarchies of range and
resolution along spatial or temporal dimensions, and it does not necessarily imply
hierarchical hardware. Some of these structures may be hardwired in part. To cope
with changing circumstances the ability to learn is essential so these structures can
adapt to signi�cant, unanticipated changes.

In Summary-A Working De�nition

In view of the above, a working characterization of intelligent systems (or of
(highly) intelligent (control) systems or machines) that captures the essential char-
acteristics present in any such system is:

An intelligent system must be highly adaptable to signi�cant unanticipated
changes, and so learning is essential. It must exhibit high degree of autonomy
in dealing with changes. It must be able to deal with signi�cant complexity, and
this leads to certain sparse types of functional architectures such as hierarchies.
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2.4 Some Examples

Below, a list of man-made systems that solve complex problems and incorporate
some of the above essential characteristics of intelligent control systems is given.
The intention, in including such list, is to point out the fact that such systems do
exist. Note that the list is far from complete, and it only contains the cases brought
forward by task force members.

An example of a Hierarchically Intelligent Control System was designed and built
at the NASA CIRSSE/RPI labs, to do truss construction remotely in deep space
for the NASA Space Station "Freedom". The coordination and Execution levels
were built using Petri nets, sensing (VSS) and motion control (CTOS) respectively.
The innovation of the project was that a system (CTOS), was directing the ow
of data at the execution level located at the site, while only commands were com-
municated to and from the coordination level on earth. Thus the system was very
e�cient requiring a narrow bandwidth communication line. The system was tested
by controlling a truss assembly at RPI, from NASA Johnson in Houston through
a telephone line. The Organization level was replaced by a human manager; the
design was completed using a Boltzmann machine Neural net, but was never built.
An Intelligent controller for a mobile robot was also planned but never built at
CIRSSE/RPI.

The following are examples of intelligent control systems in NIST's (National In-
stitute for Standards and Technology) RCS (Real-time Control System) implementa-
tions: Robot vision-based object pursuit; Robot Deburring; Composites Fabrication;
Automated Manufacturing Research Facility; Robot Machine Loading/Unloading
for a Milling Workstation; Robot Cleaning and Deburring Workstation; Robot
Deburring and Chamfering Workstation; Multiple Autonomous Undersea Vehicles;
NASA Space Station Telerobotics (NASREM); Army Field Material Handling Robot;
DARPA Submarine Automation (SOAS); BOM Coal Mine Automation; Army Un-
manned Land Vehicles: TEAM vehicle project, TMAP vehicle project. Robotics
Testbed project, RT Demo I testbed; Air Force Next Generation Controller (NGC);
NCMS Next Generation Inspection System (NGIS); DOT Intelligent Highway Ve-
hicle Vision based road following; NIST RoboCrane; Navy/NIST/ARPA Enhanced
Machine Controller.

Other examples include mobile robots that exhibit some autonomy at Oak Ridge
National Lab, Robotic Division; an intelligent controller for OSPREY machine in-
stalled at navy research center developed at Drexel University; autonomous robots
at Georgia Tech.

2.5 Future Research Directions

A list of important and promising research topics in intelligent control is given
below. Although the list may not be complete, it includes some of the directions
along which the �eld ought to be making progress in the next few years.

1. Mathematical modeling and analysis of intelligent control systems; in both
discrete event and hybrid frameworks. Model identi�cation; adaptive methods
to derive higher level, more abstract models.

2. Fault detection and identi�cation, control recon�guration; also alarms and
health monitoring.

9



3. Planning and learning control systems.

4. E�cient computational frameworks and algorithms to deal with complexity.

5. Emphasis on applications and on integrated intelligent control systems; im-
portant automotive, manufacturing and aerospace applications.

In section 3, the issues brought forward in this section are further discussed.
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3 POINTS OF VIEW OF INTELLIGENT CONTROL

This section consists of additional material that helps clarify the issues addressed
in the previous section and includes references for further reading. This material
was contributed by the task force members, all recognized for their contributions in
the area of intelligent control.

3.1 On Intelligence and its Dimensions

by J.S. Albus

A de�nition of intelligence is �rst given and then the dimensions of intelligence
are discussed; see [1] for further discussion.

De�nition of Intelligence

In order to be useful in the quest for a general theory, the de�nition of intelligence
must not be limited to behavior that is not understood. A useful de�nition of
intelligence should span a wide range of capabilities, from those which are well
understood, to those which are beyond comprehension. It should include both
biological and machine embodiments, and these should span an intellectual range
from that of an insect to that of an Einstein, from that of a thermostat to that of
the most sophisticated computer system that could ever be built. The de�nition
of intelligence should, for example, include the ability of a robot to spotweld an
automobile body, the ability of a bee to navigate in a �eld of wild owers, a squirrel
to jump from limb to limb, a duck to land in a high wind, and a swallow to work
a �eld of insects. It should include what enables a pair of blue jays to battle in the
branches for a nesting site, a pride of lions to pull down a wildebeest, a ock of geese
to migrate south in the winter. It should include what enables a human to bake a
cake, play the violin, read a book, write a poem, �ght a war, or invent a computer.

At a minimum, intelligence requires the ability to sense the environment, to
make decisions, and to control action. Higher levels of intelligence may include the
ability to recognize objects and events, to represent knowledge in a world model, and
to reason about and plan for the future. In advanced forms, intelligence provides
the capacity to perceive and understand, to choose wisely, and to act successfully
under a large variety of circumstances so as to survive, prosper, and reproduce in a
complex and often hostile environment.

From the viewpoint of control theory, intelligence might be de�ned as a knowl-
edgeable "helmsman of behavior". Intelligence is the integration of knowledge and
feedback into a sensory-interactive goal-directed control system that can make plans,
and generate e�ective, purposeful action directed toward achieving them.

From the viewpoint of psychology, intelligence might be de�ned as a behavioral
strategy that gives each individual a means for maximizing the likelihood of propa-
gating its own genes. Intelligence is the integration of perception, reason, emotion,
and behavior in a sensing, perceiving, knowing, caring, planning, acting system that
can succeed in achieving its goals in the world.

For the purposes of this paper [1], intelligence will be de�ned as the ability of a
system to act appropriately in an uncertain environment, where appropriate action
is that which increases the probability of success, and success is the achievement of
behavioral subgoals that support the system's ultimate goal.
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Both the criteria of success and the system's ultimate goal are de�ned external
to the intelligent system. For an intelligent machine system, the goals and success
criteria are typically de�ned by designers, programmers, and operators. For intelli-
gent biological creatures, the ultimate goal is gene propagation, and success criteria
are de�ned by the processes of natural selection.

There are degrees, or levels, of intelligence, and these are determined by:

1. the computational power of the system's brain (or computer),

2. the sophistication of algorithms the system uses for sensory processing, world
modeling, behavior generating, value judgment, and global communication,
and

3. the information and values the system has stored in its memory.

Intelligence can be observed to grow and evolve, both through growth in com-
putational power, and through accumulation of knowledge of how to sense, decide,
and act in a complex and changing world. In arti�cial systems, growth in computa-
tional power and accumulation of knowledge derives mostly from human hardware
engineers and software programmers. In natural systems, intelligence grows, over
the lifetime of an individual, through maturation and learning; and over intervals
spanning generations, through evolution.

Note that learning is not required in order to be intelligent, only to become more
intelligent as a result of experience. Learning is de�ned as consolidating short-term
memory into long-term memory, and exhibiting altered behavior because of what
was remembered. In [1], learning is discussed as a mechanism for storing knowledge
about the external world, and for acquiring skills and knowledge of how to act.
It is, however, assumed that many creatures can exhibit intelligent behavior using
instinct, without having learned anything.

Dimensions of Intelligence

The dimensions of intelligence may be thought of as elements in an intelligence-
vector (or IQ vector) de�ned by parameters such as:

Computing power, number of processors, interprocess communications; Mem-
ory size, storage and retrieval functions; Knowledge representation mechanisms, in-
cluding: Maps, Symbols, Attribute-value pairs, States and state- variables; Knowl-
edge presentation systems such as: Query-reply, Question-answering, List searching;
Functional capabilities such as: Motor skills, Perceptual skills, Reasoning and prob-
lem solving, Value judgment functions; Sensory resolution and range in terms of:
Number and resolution of pixels (vision, touch, hearing), Spectral range and resolu-
tion, Temporal range and resolution (hearing, speech); Sensory processing: Signals
to symbols, Detection and recognition, Recursive estimation, Haptic perception, Un-
certainty and probability; Planning and predictive capabilities such as the ability
to: Predict the results of actions, Predict actions of the world, Predict actions of
other agents; Value judgment capabilities: Compute cost, risk, and bene�ts, Evalu-
ate observed events, objects, and situations, Evaluate predicted outcomes, Generate
rewards and punishments for learning, Assign priorities to behavioral tasks; Learn-
ing capabilities such as the abilities to: Remember objects, experiences, stories,
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symbols, Learn skills and tasks, Learn from experience, Learn from a teacher, Learn
from symbolic text;

Along each of these dimensions, there are degrees or levels of capability. These
dimensions de�ne a space of intelligent systems, and the intellectual capabilities (or
IQ) of any particular system at any particular time can be represented as a point (or
vector) in that space. The origin of this space corresponds to the set of systems that
have zero level of capability along all dimensions. Thus the origin of the space of
intelligent systems consists of a point representing the set of non-intelligent systems.

The point in IQ space thus moves as the intelligence of the system grows or
changes (possibly through learning or forgetting, or through acquiring new skills or
losing skills).

[1]. Albus J.S., "Outline for a Theory of Intelligence", IEEE Transactions on Sys-
tems, Man and Cybernetics, Vol. 21, No.3, May/June 1991.
[2]. Albus J.S., "A Reference Model Architecture for Intelligent Systems Design", in
Antsaklis P.J., Passino K.M., eds., An Introduction to Intelligent and Autonomous
Control, Kluwer Academic Publishers, Norwell, MA, 1993.
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3.2 On Autonomy and Intelligence in Control

by P.J. Antsaklis

In the design of controllers for complex dynamical systems there are needs today
that cannot be successfully addressed by the existing conventional control theory.
They mainly pertain to the area of uncertainty. Heuristic methods may be needed
to tune the parameters of an adaptive control law. New control laws to perform
novel control functions to meet new objectives should be designed while the system
is in operation. Learning from past experience and planning control actions may be
necessary. Failure detection and identi�cation is needed. Such functions have been
performed in the past by human operators. To increase the speed of response, to
relieve the operators from mundane tasks, to protect them from hazards, high degree
of autonomy is desired. To achieve this, high level decision making techniques for
reasoning under uncertainty and taking actions must be utilized. These techniques,
if used by humans, may be attributed to intelligent behavior. Hence, one way to
achieve high degree of autonomy is to utilize high level decision making techniques,
intelligent methods, in the autonomous controller. Autonomy is the objective, and
intelligent controllers are one way to achieve it. More detailed treatment of the
issues brought forward in the following can be found in [1], [2] and [3].

The need for quantitative methods to model and analyze the dynamical behav-
ior of such autonomous systems presents signi�cant challenges well beyond current
capabilities. The development of autonomous controllers requires signi�cant inter-
disciplinary research e�ort as it integrates concepts and methods from areas such as
Control, Identi�cation, Estimation, and Communication Theory, Computer Science,
Arti�cial Intelligence, and Operations Research.

Conventional Control - Evolution

The �rst feedback device on record was the water clock invented by the Greek
Ktesibios in Alexandria Egypt around the 3rd century B.C. This was certainly a
successful device as water clocks of similar design were still being made in Baghdad
when the Mongols captured the city in 1258 A.D.! The �rst mathematical model
to describe plant behavior for control purposes is attributed to J.C. Maxwell, of the
Maxwell equations' fame, who in 1868 used di�erential equations to explain insta-
bility problems encountered with James Watt's yball governor; the governor was
introduced in 1769 to regulate the speed of steam engine vehicles. Control theory
made signi�cant strides in the past 120 years, with the use of frequency domain
methods and Laplace transforms in the 1930s and 1940s and the development of
optimal control methods and state space analysis in the 1950s and 1960s. Optimal
control in the 1950s and 1960s, followed by progress in stochastic, robust and adap-
tive control methods in the 1960s to today, have made it possible to control more
accurately signi�cantly more complex dynamical systems than the original yball
governor.

When J.C Maxwell used mathematical modeling and methods to explain insta-
bility problems encountered with James Watt's yball governor, it demonstrated
the importance and usefulness of mathematical models and methods in understand-
ing complex phenomena and signaled the beginning of mathematical system and
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control theory. It also signalled the end of the era of intuitive invention. The yball
governor worked adequately for a long time meeting the needs of the period. As
time progressed and more demands were put on the device there came a point when
better and deeper understanding of the device was necessary, as it started exhibit-
ing some undesirable and unexplained behavior, in particular unstable oscillations.
This is quite typical of the situation in man made systems even today. Similarly to
the yball governor, one can rely on systems developed based mainly on intuitive
invention so much. To be able to control highly complex and uncertain systems we
need deeper understanding of the processes involved and systematic design methods,
we need quantitative models and design techniques.

Conventional control systems are designed today using mathematical models of
physical systems. A mathematical model, which captures the dynamical behavior
of interest is chosen and then control design techniques are applied, aided by CAD
packages, to design the mathematical model of an appropriate controller. The con-
troller is then realized via hardware or software and it is used to control the physical
system. The procedure may take several iterations. The mathematical model of the
system must be "simple enough" so that it can be analyzed with available math-
ematical techniques, and "accurate enough" to describe the important aspects of
the relevant dynamical behavior. It approximates the behavior of a plant in the
neighborhood of an operating point.

The control methods and the underlying mathematical theory were developed
to meet the ever increasing control needs of our technology. The need to achieve
the demanding control speci�cations for increasingly complex dynamical systems
has been addressed by using more complex mathematical models such as nonlinear
and stochastic ones, and by developing more sophisticated design algorithms for,
say, optimal control. The use of highly complex mathematical models however,
can seriously inhibit our ability to develop control algorithms. Fortunately, simpler
plant models, for example linear models, can be used in the control design; this
is possible because of the feedback used in control which can tolerate signi�cant
model uncertainties in the plant and the environment. When the �xed feedback
controllers are not adequate, then adaptive controllers are used. Controllers can then
be designed to meet the speci�cations around an operating point, where the linear
model is valid and then via a scheduler a controller emerges which can accomplish the
control objectives over the whole operating range. This is, for example, the method
typically used for aircraft ight control and it is a method to design �xed controllers
for certain classes of nonlinear systems. Adaptive control in conventional control
theory has a speci�c and rather narrow meaning. In particular it typically refers
to adapting to variations in the constant coe�cients in the equations describing
the linear plant; these new coe�cient values are identi�ed and then used, directly
or indirectly, to reassign the values of the constant coe�cients in the equations
describing the linear controller. Adaptive controllers provide for wider operating
ranges than �xed controllers and so conventional adaptive control systems can be
considered to have higher degrees of autonomy than control systems employing �xed
feedback controllers.

At this point the seminal contributions of Norbert Wiener, the father of Cyber-
netics, to human-machine interaction should be mentioned. Note that many of the
ideas in intelligent control have been inuenced by past theories and methods. What
is di�erent now is that much faster, and better understood, machines are available
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today than ever before. So the dreams of yesterday may become reality in the not
so distant future.

Intelligent Control for High Autonomy Systems

There are cases where we need to signi�cantly increase the operating range. We
must be able to deal e�ectively with signi�cant uncertainties in models of increas-
ingly complex dynamical systems, in addition to increasing the validity range of our
control methods. We need to cope with signi�cant unmodelled and unanticipated
changes in the plant, in the environment and in the control objectives. This will
involve the use of intelligent decision making processes to generate control actions so
that certain performance level is maintained even though there are drastic changes
in the operating conditions. It is useful to keep in mind an example which we may
call the Houston control example . It is an example that sets goals for the future
and it also teaches humility as it indicates how di�cult, demanding and complex
autonomous systems can be. Currently, if there is an unanticipated event on the
space shuttle, such as a malfunction or a set of new tasks to be accomplished, the
problem is addressed by the large number of engineers working in Houston Control,
the ground station. After the problem is solved on the ground, the speci�c detailed
instructions about how to deal with the problem are sent to the shuttle. Imagine the
time when we will need all the tools and expertise of all Houston Control engineers,
that are related to speci�c problems, aboard the space vehicle, or the space shuttle,
for extended space travel. This is certainly not an easy problem! What is certainly
possible in the near future is to incorporate some of this knowledge in the onboard
computers to achieve higher degrees of autonomy in achieving and setting goals than
it is the practice today, thus reducing the dependence on the ground stations and
on communication links.

In view of the above it is quite clear that in the control of complex systems, there
are requirements today that cannot be successfully addressed with the existing con-
ventional control theory. They mainly pertain to the area of uncertainty, present
because of poor models due to lack of knowledge, or due to high level models used to
avoid excessive computational complexity. Normally the plant is so complex that it
is either impossible or inappropriate to describe it with conventional mathematical
system models such as di�erential or di�erence equations. Even though it might be
possible to accurately describe some systems with highly complex nonlinear di�eren-
tial equations, it may be inappropriate if this description makes subsequent analysis
too di�cult or too computationally complex to be useful. The complexity of the
plant model needed in design depends on both the complexity of the physical system
and on how demanding the design speci�cations are. There is a tradeo� between
model complexity and our ability to perform analysis on the system via the model.
Depending on the control performance speci�cations, a more abstract, higher level
model can be utilized, which will make subsequent analysis simpler. This model
intentionally ignores some of the system characteristics, speci�cally those that need
not be considered in attempting to meet the particular performance speci�cations.
For example, a simple temperature controller could ignore almost all dynamics of the
house or the o�ce and consider only a temperature threshold model of the system
to switch the furnace o� or on. This naturally leads to the study of hybrid control
systems, which are continuous-state systems controlled by sequential machines [3].
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A number of research areas important to intelligent autonomous systems may
be identi�ed. They include the areas of: Hybrid Systems, Discrete Event Systems
Theory and Simulation, Restructurable Control, Failure Detection and Identi�cation
(FDI), Intelligent Systems, Hierarchical Systems, Planning and Expert Systems,
Machine Learning, Fuzzy Control, and Neural Networks.

Intelligent Autonomous Control as a Distinct Research Area

There may be the temptation to classify the area of intelligent autonomous sys-
tems as simply a collection of methods and ideas already addressed elsewhere, the
need only being some kind of intelligent assembly and integration of known tech-
niques. This is of course not true. The theory of control systems is not covered by the
area of applied mathematics because control has di�erent needs and therefore asks
di�erent questions. For example while in applied mathematics the di�erent solutions
of di�erential equations under di�erent initial conditions and forcing functions are
of interest, in control one typically is interested in �nding the forcing functions that
generate solutions, that is system trajectories, that satisfy certain conditions. This
is a di�erent problem, related to the �rst, but its solution requires the development
of quite di�erent methods. In a rather analogous fashion the problems of interest in
intelligent systems require development of novel concepts, approaches and methods.
In particular, while computer science typically deals with static systems and no
real-time requirements, control systems typically are dynamic and all control laws,
intelligent or not, must be able to control the system in real time. So in most cases
one cannot really just directly apply computer science methods to these problems.
Modi�cations and extensions are typically necessary for example in the quantitative
models used to study such systems. And although say Petri nets may be adequate to
model and study the autonomous behavior at certain levels of the hierarchy, these
models are not appropriate to address certain questions of importance to control
systems such as stability. It is not that quantitative methods developed in other
�elds are inferior, it is the fact that these methods were developed to answer dif-
ferent questions. In addition there are problems in intelligent autonomous control
systems that are novel and so they have not studied before at any depth. Such is
the case of hybrid systems that combine systems of continuous and discrete states
[3]. The marriage of all these �elds can only be bene�cial to all. Computer Science
and Operation Research methods are increasingly used in control problems, while
the control system ideas, such as feedback, and methods that are based on rigorous
mathematical framework can provide the base for new theories and methods in those
areas.

Hybrid System Modeling and Design

Being able to control a continuous-state system using a discrete-state supervisory
controller is a central problem in the highly autonomous control of physical systems.
The theory of hybrid system modeling and control addresses some of the important
issues of extracting higher level abstract models from more detailed ones [3].

Concluding Remarks
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Computational complexity is a major issue as the systems studied are typically
very complex. Reduced computational complexity may mean that the controller
can be implemented in real time. Without attempting to address the computa-
tional complexity issue it is impossible to achieve the levels of autonomy envisioned.
Systematically deriving more abstract models so that only the necessary information
is dealt with is essential; it is as essential or more than designing faster computers.

Incorporating dedicated sensors and actuators to identify changes and recon-
�gure the control laws may be necessary in high autonomy systems; this may be
necessary for example in satellites to accomplish failure diagnosis. Technological
breakthroughs are making large numbers of distributed sensors and actuators pos-
sible. This will certainly make recon�guration and higher autonomy more common
place. Areas such as sensor data fusion are becoming more important so to be able
to deal with the mass of available data. And methods to extract only the neces-
sary information from the data, which is related to the problem of extracting more
abstract models, are becoming essential in the quest for higher autonomy.

Improving existing control systems by adding on new features is a plausible
approach having high chances for success. This bottom-up approach builds upon
experience and uses existing knowledge. It is also easier to justify in applications,
where system failure is costly in human and material sense.

In summary, conventional control methods need to be enhanced, so that control
systems can be designed that cope with signi�cant changes in the plant, environment
and objectives. Note that the goal is control systems with higher degree of autonomy
in achieving and even setting control goals. It is stressed that autonomy is the design
requirement and intelligent methods appear to o�er some of the necessary tools to
achieve higher degrees of autonomy. The research area of intelligent autonomous
systems is a research area in its own right. It uses methods from a variety of areas but
it modi�es and extends them to address the particular problems of interest. There
is need to answer questions and resolve novel problems in Planning and Expert
Systems, in Learning and Neural Control, in Discrete Event Dynamical and Hybrid
Systems, in Recon�gurable Control Systems and FDI Systems to mention but a few.
There is great need for quantitative methods and mathematical rigor in the area;
there is need for systematically generating less detailed, more abstract models. On
going research in hybrid systems is attempting to address some of these problems.

[1]. Antsaklis P.J., Passino K.M. and Wang S.J.,"Towards Intelligent Autonomous
Control Systems: Architecture and Fundamental Issues", Journal of Intelligent and
Robotic Systems, Vol.1, pp.315-342, 1989.
[2]. Antsaklis P.J.and Passino K.M.,"Introduction to Intelligent Control Systems
with High Degrees of Autonomy", in An Introduction to Intelligent and Autonomous
Control, Antsaklis P.J., Passino K.M., eds., Kluwer Academic Publishers, Norwell,
MA, 1993.
[3]. Antsaklis P. J., Stiver J. A. and Lemmon M. D., "Hybrid System Modeling and
Autonomous Control Systems", Hybrid Systems, R L Grossman, A Nerode, A P
Ravn, H Rischel Eds, pp 366-392, Lecture Notes in Computer Science, LNCS 736,
Springer-Verlag, 1993.
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3.3 On Intelligence and Learning

by M.D. Lemmon

A supervisory control system uses discrete event systems to control the plant.
Such control systems can often be referred to as "intelligent" control systems be-
cause the actions of the controller attempt to mimic high level decision making
processes of human operators. This notion of machine intelligence, however, is not
entirely satisfying. At issue is the notion that mimicry of human decision making
constitutes intelligence. The traditional formulation of such controllers involve the
assignment of interpretations to logical symbols. Such interpretations allow us to
"explain" what the controller is attempting to do. In a temperature control system,
for instance, a certain range of temperatures might be designated as "TOO HOT",
thereby necessitating a control action to cool the system. The "intelligence" of the
system is buried in its interpretation of that symbol "TOO HOT". But where does
this interpretation originate? In general, it is the designer who provides symbol
interpretations. This means that it is not the system, but rather the system de-
signer who is intelligent. Therefore if we are to have an "intelligent" control system,
the system must have a capability for assigning symbol interpretations in an au-
tonomous manner. This capability can be referred to as "symbol binding". The
degree to which these associations can be done autonomously represents one way of
quantifying the system's intelligence.

There are a number of consequences to this view of machine intelligence. 1).
A desirable property of intelligent systems is that they are "adaptive". The ability
to adaptively bind symbols with respect to an underlying organizational principle
means that the system "understands" the meaning or signi�cance of that organi-
zational principle. 2). Intelligence is an internal property of the system. It is
not a behavior. The immediate consequence of this observation is that a system's
intelligence cannot always be determined by passive observation of behavior. In-
telligence must be determined by actively testing to see whether or not the system
is adaptively binding symbols with respect to an internally realized performance
principle. 3). A pragmatic reason for focusing on "intelligent" control systems is
that they endow the controlled system with enhanced autonomy. Examining the
anticipated applications of intelligent control, it is apparent that they are meant
for complex and unpredictable systems. This means that the system may change
so that the original symbol bindings may no longer represent a valid interpretation
of the system's symbolic behavior. If this occurs, then it is well within the realm
of possibility for our controller to happily "chunk" away and produce a stream of
nonsensical control directives. The reason this occurs is because the system has no
"understanding" of the signi�cance or meaning of the symbols it is manipulating.
The result of this situation is a system whose autonomy is circumscribed by an a
priori and possibly ad hoc set of symbol bindings. The pragmatic solution is to allow
the system to adaptively �x bindings with respect to an internal organizational or
performance principle. This is precisely what we should expect of an "intelligent"
control system.

The preceding discussion has introduced a perspective on intelligent control
which focuses on the way in which a system determines the interpretation of control
directives or policies. It was argued that a desirable property of intelligent control
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systems is that they bind symbol interpretations using an internal representation of
the plant's underlying control objective. In this regard, intelligent control can be
viewed as the ability of a system to autonomously organize its controller to achieve
a well-de�ned objective. Autonomy becomes an important attribute of intelligent
control in which the degree of autonomy quanti�es one aspect of the system's intel-
ligence.

[1] Lemmon M.D. and Antsaklis P.J., "Towards a Working Characterization of Intel-
ligent Supervisory Control", Technical Report of the ISIS Group (Interdisciplinary
Studies in Intelligent Systems), University of Notre Dame, ISIS-93- 008, Notre Dame,
IN, November, 1993.
[2]. Lemmon M. D., Stiver J. A. and Antsaklis P. J., "Event Identi�cation and
Intelligent Hybrid Control", Hybrid Systems, R L Grossman, A Nerode, A P Ravn,
H Rischel Eds, pp 269-296, Lecture Notes in Computer Science, LNCS 736, Springer-
Verlag, 1993.
[3]. Antsaklis P.J., Lemmon M. D. and Stiver J. A., "Learning to be Autonomous:
Intelligent Supervisory Control", Technical Report of the ISIS Group (Interdisci-
plinary Studies in Intelligent Systems), No. ISIS-93-003, Univ of Notre Dame, April
1993. Also in Intelligent Control: Theory and Practice, Gupta M.M., Sinha N.K.,
eds., IEEE Press, Piscataway, NJ, 1994.
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3.4 On Intelligent Control, Learning and Hierarchies

by A. Meystel

Why intelligent control? The need to deal with problems of uncertainty is not a
new one. However, only during the last decades, the signi�cant developments in the
computer area enabled new approaches to these problems: approaches employing
cognitive properties of intelligence including generalization, focusing attention, and
combinatorial search and others considered to be properties of human intelligence.
Note that all properties of intelligence including learning, recognition, existence of
resolution levels, can be reduced to existence of generalization, focusing attention,
and combinatorial search. Intelligent control focuses upon problems that otherwise
cannot be solved, or can be solved in a unsatisfactory way.

1. Control: Control is to direct a system to a preassigned goal or to maximize a
preassigned measure of utility under a set of speci�cations.

This directing can be done both in an open-loop as well as in a closed-loop fash-
ion. Open loop control presumes existence of a model of the system. The open-loop
control assignment invokes the process of "plan" generation ("planning") performed
e.g. by searching. Since the model is usually incomplete and/or inadequate, the
closed loop controller is required for error compensation which uses a feedback.
Thus, De�nition 1 presumes existence of a goal, a model, a plan, or a feedforward
control law, and a feedback control law - all determined for a particular resolution
of the control level.

2. Resolution (Scale, Granularity, Accuracy, Discretization): Resolution of the
control level is the size of the indistinguishability zone (tile) for the representation
of goal, model, plan and feedback law. Any control solution alludes to the idea of
resolution (scale, granularity, accuracy, distinguishability zone, discrete) explicitly,
or implicitly.

It turns out that resolution directly determines the complexity of computations.
In complex systems and situations one level of resolution is not su�cient because
the total space of interest is usually large, and the �nal accuracy is usually high
enough. So, if the total space of interest is represented with the highest accuracy,
the e (epsilon)-entropy of the system (the measure of its complexity) is very high.
E (epsilon)- entropy=log(total volume of space/elementary discrete of space).

The total space of interest is to be considered initially with a much lower res-
olution. Only a subset of interest is considered at a higher resolution. The subset
of this subset is considered with even higher resolution, and so on, until the highest
resolution is achieved. This consecutive focusing of attention results in a multilevel
task decomposition, and �nding the intermediate (nested) plans at several resolution
levels of the multiresolutional system.

We should start talking about complexity of the intelligent controller explicitly,
remember that intelligence is a tool of �ghting complexity, remember that this is
why the level of resolution emerge.

3. Multiresolutional (Multiscale, Multigranular) representation system: Mul-
tiresolutional system is de�ned as a data (knowledge) structure for representing the
model of our system at several resolution levels-scales. (A terminological comment:
instead of the word "multiresolutional system", a word "heterarchy" can be used
which is understood as follows: heterarchy - is a hierarchical organization of a het-
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erogeneous information (knowledge). "Hierarchy" is a more general term, it can be
related both to "homogeneous" and "heterogeneous" representations. We should
not abstain from using these terms if they are clearly de�ned. Multiscale system
seems to be a good term too).

In order to construct a multiresolutional (multiscale) system of representation,the
process of generalization is consecutively applied to the representation of the higher
levels of resolution. Generalization usually presumes clustering of the subsets and
substitution of them by entities of the higher level of abstraction. This is why in-
stead of the term "resolution levels" we use sometimes an expression "abstraction
levels" (which is the same as "generalization levels", "granularity levels", etc.).

4. Intelligent Control: Intelligent Control is a computationally e�cient proce-
dure of directing to a goal of a complex system with incomplete and inadequate
representation and under incomplete speci�cations of how to do this (acting ap-
propriately in an uncertain environment).((We can talk about the degree of com-
pleteness of the system representation and the speci�cations formulation: then all
levels of intelligence will be presented)) Sometimes, Intelligent Control presumes
working under not completely speci�ed problem which requires further clari�cation
during the functioning of the system. Intelligent control as a rule combines plan-
ning with on-line error compensation; it requires learning of both the system and the
environment to be a part of the control process. Most importantly: intelligent con-
trol usually employs generalization (G), focusing attention (FA), and combinatorial
search (CS) as its primary operators (GFACS) which leads to multiscale structures.

In all intelligent controllers, one can easily demonstrate presence of the GFACS
operators. It is also possible to demonstrate that using the set of GFACS operators
is not typical for conventional controllers, although the elements of GFACS are often
utilized. The following attributes of Intelligent Control are presumed: multiresolu-
tional (multiscale) system of goals, multiresolutional (multiscale) system of model
representation,multiresolutional (multiscale) system of plans, and multiresolutional
(multiscale) system of feedback control laws.

(A terminological comment: fuzzy logic controllers are tools of generalization and
focusing attention; neural networks are tools of generalization , focusing attention,
and combinatorial search; combinatorial search has many particular instantiations:
A-star, exhaustive search, complete, or approximate dynamic programming, etc.)

5. Intelligence
Intelligence is a control tool.(for the system at hand) that has emerged as a

result of evolution. Intelligence is oriented toward complexity reduction. Intelligence
allows for an increase in functionality with a reduction of computational complexity.

Intelligence grows through generation of multiresolutional (multigranular, mul-
tiscale) system of knowledge processing. Multiresolutional system of knowledge
processing is not hardwired. These multi-level systems are not `hardwired` hierar-
chies (although they can be in some cases); they are rather virtual hierarchies of
perception, representation of the World Model, i.e. knowledge representation, and
representations of decisions. As the new concept emerges - a new `node`is created.
Intelligence can be evaluated by a"degree of intelligence". The de�nition of intel-
ligent control should be based on the properties of intelligence as we understand
them rather than the virtue of using some particular hardware components. The
following properties can be used for evaluating the degree of intelligence a) Error
compensation - low level of intelligence (Level 1), b) Planning+error compensation
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within the vocabulary of the designer - medium level of intelligence (Level 2), c)
Planning+error compensation with creation of new alternatives not introduced pre-
viously by the designer - high level of intelligence (Lever 3), d) Reformulation of
assignment in changing situation-very high level of intelligence (Level 4).

6. Learning.
Maintenance of the multiresolutional system of representation is done by learning

which employs the same set of GFACS operators. Levels of resolution are selected to
minimize the complexity of computations. Planning and determining of the feedback
control laws is also done by joint using of generalization, focusing of attention, and
combinatorial search (GFACS). When generalization is continuously done in the
course of time-varying of variables, it becomes a key tool of learning.

The process of generalization upon the time-varying functions is called learning
of a control system. It results in constant updating of the multiresolutional system
of representation, and thus, in improvement of plans and feedback control laws.
Learning is a component of this multiresolutional knowledge processing.

The operation of learning was associated with the layers: each layer is learning
separately: all learning processes (at particular levels) are connected via their re-
sults. Learning experiences can be organized ONLY by using a multiresolutional
structure! (This is how it is done in the neural nets too.) Levels are not hard-
wired,they are constructed from the information at hand.

7.Nesting
Nesting is a property of recursively applying the same procedures of multireso-

lutional knowledge processing within the operator of processing at a level. Levels of
the multiresolutional intelligent controller are nested one within another. The levels
function as separate controllers.

a. This separation in levels is a result of a need to reduce the complexity of
computations. Thus, instead of solving in one shot the whole problem with the
maximum volume of the state space and with the amount of high resolution details
one chose to solve several substantially simpler problems nested one within another.
b. Assigning of resolution levels is probably the most urgent problem of the area of
intelligent control: it should be done so to minimize the complexity of the controller.
However, each level of control has its perception, its world model, and its decision
making. Perceptions of all levels are nested one within another, world models are
nested one within another, decisions are nested one within another too. These
system would be impossible without generalization, focusing attention and combi-
natorial search. c. All these level controllers have limited resolution and they can
be de�ned as fuzzy controllers. All these controllers are part of the overall learning
process and cannot function unless an NN-like structure, recognizes of motion and
primitives of the world that can be correlated with each other.

8. Additional relevant issues:
8.1 Why has the property of intelligence emerged in the living creatures? In

the evolving Nature, the evolution of intelligence can be demonstrated as a tool of
survival that emerged in order to control the the systems in better correspondence
with the ever changing environment conditions and with the evolving needs and
`desires`. As the complexity of needs is growing, �ghting this complexity is becoming
a major role of intelligence.

8.2. Increasing functionality with reducing computational complexity-a funda-
mental result of the evolution of intelligence. This evolution of intelligence can be
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unequivocally interpreted as development of a system (together with its controller)
which allows for increasing the functionality of the system while �ghting with com-
putational complexity. This is why the ability to `generalize` emerges (`lumping`
for better storage and quicker computation). Generalization is a tool of creating a
new, abridged representation. The new representation `in generalities`, forms the
level of lower resolution . Since at lower resolution we can a�ord the larger scope
of attention - we can solve the problem of a larger picture. So, the decision of the
required resolution can be preceded by the decision at lower resolution, and so on.

8.3. Why hierarchies? We can call it "a hierarchy", or we can use another term,
but we cannot avoid labeling the structure of intelligent controller that by and large
boils down to a hierarchy. About `hierarchy`: GFACS recursively constructs levels
of representation, and levels of decision making, obviously supplemented by levels of
perception. So, the system which employs GFACS as an elementary computational
package builds itself as a system of multiple levels of representation. As a result
of this consecutive levels construction it arrives with a low resolution level which
contains maximum of what the system knows - in a compact, generalized, aggregated
form. The next level is dealing with a subset of this low resolution picture - but
with more details, i.e. at a higher resolution (and so on recursively). For the whole
process of decision making several resolution levels are required. Each of these
levels executes the same chain: perception-knowledge processing- decision making.
Should we call this multilayer system a hierarchy? I think, the term to be chosen
is a secondary issue. At least for the knowledge representation system it can be
considered as such. Object-orientedness emerges when we are dealing with entities.
Multiresolutional `nestedness` is obvious when no entities are listed and we describe
textures. Is it a single-principle hierarchy? Not at all. It can be - for a simple case.
In general case it is a mixture of hierarchies based on many principles - a heterarchy.

But no matter what term we will agree upon: hierarchy, heterarchy, hierarchical
network, multiresolutional hierarchy, multigranular network - it is a layered system
of multiresolutional representation with decision making processes performed at
each level. Representations are nested and decomposable. Decisions are nested and
decomposable too. Processes of the higher resolution can be guided by processes of
the lower resolution.

[1]. Meystel A., "Nested Hierarchical Control ", in Antsaklis P.J., Passino K.M.,
eds., An Introduction to Intelligent and Autonomous Control, Kluwer Academic
Publishers, Norwell, MA, 1993.
[2]. Meystel A., Autonomous Mobile Robots, World Scienti�c, 1991.
[3]. Meystel A., "Intelligent Control ", in Encyclopedia of Physics and Technology,
Academic Press, 1993.
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3.5 On the Relevance of Control Engineering

by K.M. Passino
In this section we explain the control engineer's perspective on intelligent con-

trol systems. Let us begin by de�ning a "control methodology" to be the set of
techniques and procedures used to construct and/or implement a controller for a
dynamical system. For many intelligent control systems (e.g., fuzzy/neural con-
trollers, expert controllers, learning controllers, hierarchical intelligent controllers)
the controller construction methodology is largely heuristic and based on certain
principles from Arti�cial Intelligence or Operations Research. The intelligent con-
trollers are constructed to emulate, e.g., certain human cognitive functions to control
complex dynamical processes. In the end implementation, however, nothing magi-
cal is created. The resulting intelligent controller is just a heuristically constructed
nonlinear, perhaps adaptive system which is therefore amenable to control theoretic
approaches to analysis. For instance, the simple direct fuzzy controller is a static
nonlinear map, the expert controller may model certain "IF- THEN" statements
in a control implementation (a type of nonlinearity) to ensure reliable operation,
and many (numerical) learning controllers are types of nonlinear adaptive systems.
More complex, multi-layer intelligent controllers are very complex adaptive decision
making systems, but nevertheless they are nonlinear controllers (to convince yourself
of this think of the implementation or simulation of the intelligent control system -
if you can simulate it, you can write down equations representing it as a nonlinear
dynamical system).

Hence, from a control engineer's perspective the focus should be on whether
intelligent controllers are able to achieve higher performance with a greater degree
of autonomy than their conventional predecessors. To develop this focus further,
consider a general control system where P is a model of the plant, C represents
the controller, and T represents speci�cations on how we would like the closed
loop system to behave. For some classical control problems the scope is limited so
that C and P are linear and T simply represents, for example, stability, rise time,
and overshoot speci�cations. In this case intelligent control techniques may not be
needed. As engineers, the simplest solution that works is the best one. We tend to
need more complex controllers for more complex plants (where, for example, there is
a signi�cant amount of uncertainty) and more demanding closed loop speci�cations
T. Consider the case where: (i) P is so complex that it is most convenient to represent
it with ordinary di�erential and discrete event system models (or some other hybrid
mix of models) and for some parts of the plant the model is not known (or it is
too expensive to �nd), and (ii) T is used to characterize the desire to make the
system perform well and act with high degrees of autonomy (i.e., so that the system
performs well under signi�cant uncertainties in the system and its environment for
extended periods of time, and compensates for signi�cant system failures without
external intervention).

The general control problem is how to construct C, given P, so that T holds.
From a control engineer's perspective, researchers in the �eld of intelligent control
are trying to use intelligent (and conventional) control methodologies to solve this
general control problem. It is important to note that researchers in intelligent control
have been naturally led to focus on the very demanding general control problem
described above (i) in order to address pressing needs for practical applications, and
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(ii) since often there is a need to focus on representing more aspects of the plant
so that they can be used to reduce the uncertainty in making high level decisions
about how to perform control functions that are normally performed by humans.

Viewed as a control problem, the following research areas become very important
for the �eld of intelligent control: - mathematical models for intelligent control sys-
tems (di�erential equations, discrete event systems, hybrid systems) - systematic (or
perhaps automatable) design procedures for intelligent controllers - techniques for
nonlinear analysis to study stability, boundedness, convergence issues, limit cycles,
controllability, observability, robustness, etc. - performance analysis - simulation
techniques for intelligent systems (particularly, hybrid systems) - implementation
issues Hence, although intelligent controllers may operate in much more complex
fashion than many conventional controllers to solve control problems that are be-
yond the focus of conventional control, we can �nd much in common with the �eld
of conventional control in the areas of methodology and research issues.

Generally speaking the �eld of intelligent control is helping to expand the hori-
zons of the �eld of control theory. Much of the drive to expand the focus of conven-
tional control, through the �eld of intelligent control comes from the ever expanding
frontiers of technology. Clearly, computer science, engineering, and technology drive
the development of control theory, control engineering, and control technology by
providing alternative strategies for the functionality and implementation of con-
trollers for dynamical systems. For instance, the introduction of the microprocessor
had signi�cant impacts on: (i) the implementation and wide spread use of con-
trollers, (ii) the expansion of the role of control systems over the times when they
were implemented solely in an analog fashion, and (iii) the development of extensive
theoretical results in control theory. While a portion of control theory naturally
developed driven by technology, certain theoretical results allowed the technology
to expand its role due to the fact that they provided methods to "guarantee" that
the technology would work in critical environments (e.g., the use of stability theory
for ensuring the safe operation of controllers for nuclear reactors and aircraft).

Analogous statements can be made relative to more recent developments in com-
puter science and technology. For instance: What will the impact of highly parallel
processing (e.g., via neural networks), fuzzy processors, or techniques from AI have
on control engineering and the implementation of controllers? Is there a role for
theoretical and experimental engineering analysis in expanding the use of intelli-
gent control? From a control engineer's perspective, the �eld of intelligent control
is trying to answer important questions such as these. Overall, we have computers
with enhanced capabilities and we are trying to �gure out what we can do with this
added capability in the solution of control problems.

[1] Passino K.M., "Bridging the Gap Between Conventional and Intelligent Control",
Special Issue on Intelligent Control, IEEE Control Systems Magazine, Vol. 13,
pp. 12-18, 1993; See an expanded version of this paper: "Towards Bridging the
Perceived Gap Between Conventional and Intelligent Control", to appear in Gupta
M.M., Sinha N.K., eds., Intelligent Control: Theory and Practice, IEEE Press,
Piscataway, NJ, 1994.
[2] Antsaklis P.J., Passino K.M., eds., An Introduction to Intelligent and Autonomous
Control, Kluwer Academic Publishers, Norwell, MA, 1993.
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3.6 On the Analytic Formulation of Intelligent Controls

by G.N. Saridis

The theory of Intelligent Control systems, developed by Saridis combines the
powerful high-level decision making of the digital computer with advanced math-
ematical modeling and synthesis techniques of system theory and with linguistic
methods of dealing with imprecise or incomplete information [1]. This produces a
uni�ed approach for the design of Intelligent Machines. The theory may be thought
of as the result of the intersection of the three major disciplines of Arti�cial Intelli-
gence, Operations Research, and Control Theory. The theory is aimed at establish-
ing Intelligent Controls as an engineering discipline, with the purpose of designing
Intelligent Autonomous Systems of the future.

Intelligent Control provides the fusion between the mathematical and linguistic
methods and algorithms applied to systems and processes. It combines e�ectively
the results of cognitive systems research, with various mathematical programming
control techniques.

The control intelligence is hierarchically distributed according to the Principle
of Precision with Decreasing Intelligence (IPDI), evident in all hierarchical manage-
ment systems [2]. The analytic functions of an Intelligent Machine are implemented
by Intelligent Controls, using Entropy as a measure. The resulting structure is com-
posed of three basic levels of controls, each level of which may contain more than
one layer of tree-structured functions:

The organization level; is modeled after a Boltzmann machine for abstract rea-
soning, task planning and decision making; The coordination level; is composed of
a number of Petri Net Transducers supervised, for command exchange, by a dis-
patcher, which also serves as an interface to the organization level; The execution
level; includes the sensory, planning for navigation and control hardware which in-
teracts one-to-one with the appropriate coordinators, while a VME bus provides a
channel for database exchange among the several devices.

The functions involved in the upper levels of an intelligent machine are imitating
functions of human behavior and may be treated as elements of knowledge-based
systems. Actually, the activities of planning, decision making, learning, data storage
and retrieval, task coordination, etc., may be thought of as knowledge handling and
management [3].

[1] Saridis G.N. and Valavanis K.P., RAnalytical Design of Intelligent MachinesS,
Automatica the IFAC Journal, 24, No. 2, pp. 123-133, March 1988.
[2] Saridis G.N., RAnalytic Formulation of the IPDI for Intelligent MachinesS, Au-
tomatica the IFAC Journal, 25, No. 3, pp. 461-467, 1989.
[3] Valavanis K.P., Saridis G.N., Intelligent Robotic System Theory: Design and
Applications, Kluwer Academic Publishers, Boston, MA., 1992.
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3.7 On Intelligence and Intelligent Control

by P. Werbos

A naive way of responding to the issue of "What is intelligent control" is to regard
this as an essentially empty issue of semantics. But there is more than semantics at
stake here, and semantics do have some real signi�cance. The word "intelligence"
has a long and important history, and it would be a great shame if we in control
decided to throw out its historical meaning. If we are attracted to concepts like
autonomy, perhaps we should call them "autonomous" control. Instead of arguing
over which concept gets into the de�nition, why not have separate words for separate
concepts?

The word "intelligent" has two kinds of meanings, historically. Above all, it refers
to the kinds of capabilities that the human brain possesses, in toto. Secondarily,
it refers to ideas from AI intended to replicate some vision of the key components
{ planning over time, reasoning, etc.. If we have lots of nice little incremental
improvements to make in control, I really wish we could agree to call them "smart
control" or "brilliant control," and leave the word " intelligent" alone. I'm afraid I
tend to view the usual supervisory control as one of those incremental improvements.

The formal statement I would personally propose to make about intelligent con-
trol is simply the one made in the two- page foreword in [1]: True intelligent con-
trol { control which replicates the most critical aggregate capabilities of human
intelligence{ does not exist in any arti�cial system today. A true intelligent con-
troller would, above all, have to be capable of maximizing some notion of goal-
achievement or utility over time in an uncertain, nonlinear environment, through
a learning process which can be implemented e�ciently on distributed hardware
analogous to networks of neurons in the brain. It would also have to be capable
of true real-time performance and learning. The learning and planning capabilities
should be enough to allow the ability to learn higher-order symbolic reasoning, in
principle, if enough hardware were available, to the extent that humans are capa-
ble of learning symbolic reasoning. Even though no one has built such a system
yet, there has been substantial progress in understanding the key prerequisites to
building such a system. The �eld of intelligent control may be de�ned as that com-
munity of researchers who believe that they have a clear plan or vision of how such
a controller might be built, through a strategic vision of current research opportu-
nities. The visions of how to reach this end point are in fact very varied. Some
of us hope that small incremental improvements of existing controllers may do the
job. Others believe that that is like trying to build an airplane by successive im-
provements in an auto engine used on the ground. It is very clear, however, that
the end point here cannot be achieved without a greater synthesis of new concepts
from neural network theory, from adaptive and optimal control theory, and from
various strands of AI, such as machine learning or fuzzy logic. It is also clear that
this will require true intellectual synthesis, and not just cutting and pasting; for ex-
ample, there are concepts involving approximate dynamic programming which may
provide a basis for unifying and implementing concepts from all these di�erent �elds
in a uni�ed learning control system. The development and understanding of true
intelligent control will require a great deal of boldness, but the potential bene�ts
are also enormous. In addition to the obvious technological bene�ts, it may well be
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that a mathematical, engineering-grounded understanding of intelligent control will
be an absolute prerequisite to a true understanding of intelligence as it exists in the
human brain and the human mind. From a strict scienti�c point of view, such an
understanding would be comparable in importance to Newton's discovery of gravity
(for which calculus was a prerequisite).

[1]. White D.A., Sofge D.A., eds., Handbook of Intelligent Control Neural, Fuzzy,
and Adaptive Approaches, Van Nostrand 1992.
[2]. Werbos P., "Elastic fuzzy logic: a better �t to neurocontrol and true intelli-
gence", Journal of Intelligent and Fuzzy Systems, Vol. 1, No. 4, 1993.
[3]. Werbos P., Roots of Backpropagation: From Ordered Derivatives to Neural
Networks and Political Forecasting, Wiley, 1993.
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3.8 Additional References

The following books are good sources of additional references on Intelligent Con-
trol Systems:

[1]. An Introduction to Intelligent and Autonomous Control, Antsaklis P.J., Passino
K.M., eds., Kluwer Academic Publishers, Norwell, MA, 1993.
[2]. Handbook of Intelligent Control Neural, Fuzzy, and Adaptive Approaches,
White D.A., Sofge D.A., eds., Van Nostrand 1992.
[3]. Intelligent Control: Theory and Practice, Gupta M.M., Sinha N.K., eds., IEEE
Press, Piscataway, NJ, 1994.
[4]. Meystel A., Autonomous Mobile Robots, World Scienti�c, 1991.
[5]. Valavanis K.P., Saridis G.N., Intelligent Robotic System Theory: Design and
Applications, Kluwer Academic Publishers, Boston, MA., 1992.
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